K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2021

a. (x - 22) - 1 = 0

<=> x - 4 - 1 = 0

<=> x = 5

b. 4 - (x - 2)2 = 0

<=> 22 - (x - 2)2 = 0

<=> (2 - x + 2)(2 + x - 2) = 0

<=> x(4 - x) = 0

<=> \(\left[{}\begin{matrix}x=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

 

5 tháng 9 2021

d. (3x - 2)2 - (2x + 3)2 = 5(x + 4)(x - 4)

<=> (3x - 2 - 2x - 3)(3x - 2 + 2x + 3) = 5(x2 - 16)

<=> (x - 5)(5x + 1) = 5x2 - 80

<=> 5x2 + x - 25x - 5 = 5x2 - 80

<=> 5x2 - 5x2 + x - 25x = -80 + 5

<=> -24x = -75

<=> x = \(\dfrac{25}{8}\)

9 tháng 6 2017

a) \(4x^2-8x=0\)

\(\Rightarrow4x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0+2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy \(x_1=0;x_2=2\)

b) \(\left(x+5\right)-3x\left(x+5\right)=0\)

\(\Rightarrow-3x^2-14x+5=0\)

\(\Leftrightarrow\left(-3x+1\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-3x+1=0\\x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

Vậy \(x_1=-5;x_2=\dfrac{1}{3}\)

9 tháng 6 2017

\(a,4x^2-8x=0\Rightarrow4x\left(x-8\right)=0\Rightarrow\left[{}\begin{matrix}4x=0\\x-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)\(b,\left(x+5\right)-3x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(1-3x\right)=0\Rightarrow\left[{}\begin{matrix}x+5=0\\1-3x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\3x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{3}\end{matrix}\right.\)

26 tháng 8 2018

a) \(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left(x+2\right)^2=3^2\)

\(\Rightarrow x+2=3\)

\(\Rightarrow x=3-2=1\)

26 tháng 8 2018

a) ( x + 2 )2 = 9

=> ( x + 2 ) 2 = 9

=> ( x + 2 )2 = 32

=> x + 2 = + 3

=> \(\orbr{\begin{cases}x+2=-3\\x+2=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

Vậy x = -1; 5

b) ( x + 2 )2 - x2 + 4 = 0

=> ( x + 2 )2 - ( x2 - 4 ) = 0

=> ( x + 2 )2 - ( x + 2 ) ( x  - 2 ) = 0

=> ( x + 2 ) ( x + 2 -  x + 2 ) = 0

=> ( x + 2 ) . 4 = 0

=> x + 2 = 0 

=> x = - 2

Vậy x = - 2 

c)  5 ( 2x - 3 )2 - 5 ( x + 1 )2 - 15( x + 4 ) ( x - 4 )  = - 10

=> 5 ( 4x2 - 12x + 9 ) - 5 ( x2 + 2x + 1 ) - 15 ( x2 - 42 ) = - 10

=> 20x2 - 60x + 45 - 5x2 - 10x - 5 - 15x2 + 240 = -10

=> - 70x + 280 = - 10

=> - 70x = - 290

=> x = \(\frac{29}{7}\)

Vậy x = \(\frac{29}{7}\)

d)  x ( x + 5 ) ( x - 5 ) - ( x + 2 ) ( x2 - 2x + 4 ) = 3

=> x ( x2 - 25 ) - ( x3 - 8 ) = 3

=> x3 - 25x - x3 + 8 = 3

=> - 25x + 8 = 3

=> - 25x = -5

=> x = \(\frac{1}{5}\)

Vậy x = \(\frac{1}{5}\)

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

9 tháng 8 2018

giups mình với các bạn,thứ 7 này mink phải nộp rồi

9 tháng 8 2018

Hướng dẫn thôi nha bạn.

Giải:

Bài 1.

- Nhân đơn thức với đa thức: Nhân đơn thức với từng hạng tử của đa thức. (Rút gọn các hạng tử đồng dạng)

VD: Câu a)

\(2x\left(x^2-7x-3\right)\)

\(=2x.x^2-2x.7x-2x.3\)

\(=2x^3-14x^2-6x\)

- Nhân đa thức với đa thức: Nhân từng hạng tử của đa thức này với từng hạng tử của đa thức kia. (Rút gọn các hạng tử đồng dạng)

VD: Câu e)

\(\left(x^2-2x+3\right)\left(x-4\right)\)

\(=x^2.x-x^2.4-2x.x+2x.4+3.x-3.4\)

\(=x^3-4x^2-2x^2+8x+3x-12\)

\(=x^3-6x^2+11x-12\)

Bài 2.

Áp dụng hằng đẳng thức (số 1 và số 2)

VD: \(892^2+892.216+108^2\)

\(=892^2+2.892.108+108^2\)

\(=\left(892+108\right)^2\)

\(=1000^2=1000000\)

Bài 3: Chủ yếu áp dụng hằng đẳng thức và phương pháp đặt nhân tử.

VD: Câu a)

\(7x^2-28=0\)

\(\Leftrightarrow7\left(x^2-4\right)=0\)

\(\Leftrightarrow x^2-4=0\left(7\ne0\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)

Bài 4: Áp dụng hằng đẳng thức

\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(\Leftrightarrow M=x^3+27-\left(x^3+54-x\right)\)

\(\Leftrightarrow M=x^3+27-x^3-54+x\)

\(\Leftrightarrow M=-27+x\)

Thay \(x=27\)

\(\Leftrightarrow M=-27+27=0\)

Vậy ...

20 tháng 9 2018

a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)

\(\Rightarrow x^3+3^3-x\left(x^2-4\right)=27\)

\(\Rightarrow x^3+27-x^3+4x=27\)

\(\Rightarrow27+4x=27\)

\(\Rightarrow4x=0\)

\(\Rightarrow x=0\)

20 tháng 9 2018

b) \(2x^2+7x+3=0\)

\(\Rightarrow2x^2+x+6x+3=0\)

\(\Rightarrow x\left(2x+1\right)+3\left(2x+1\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-1\\x=-3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\)