Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.x^2-4x-2\sqrt{2x-5}+5=0\left(x>=\dfrac{5}{2}\right)\)
\(\text{⇔}2x-5-2\sqrt{2x-5}+1+x^2-6x+9=0\)
\(\text{⇔}\left(\sqrt{2x-5}-1\right)^2+\left(x-3\right)^2=0\)
\(\text{⇔}\sqrt{2x-5}-1=0\) hoặc \(x-3=0\)
\(\text{⇔}x=3\left(TM\right)\)
KL...........
\(2.x+y+4=2\sqrt{x}+4\sqrt{y-1}\)
\(\text{⇔}x-2\sqrt{x}+1+y-1-4\sqrt{y-1}+4=0\)
\(\text{⇔}\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-2\right)^2=0\)
\(\text{⇔}x=1;y=5\)
KL..........
\(3.\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-5}=\dfrac{1}{2}\left(x+y+z-7\right)\)
\(\text{⇔}2\sqrt{x-2}+2\sqrt{y-3}+2\sqrt{z-5}=x+y+z-7\)
\(\text{⇔}x-2-2\sqrt{x-2}+1+y-3-2\sqrt{y-3}+1+z-5-2\sqrt{z-5}+1=0\)
\(\text{⇔}\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-5}-1\right)^2=0\)
\(\text{⇔}x=1;y=4;z=6\)
KL...........
\(d.Tuong-tự-nhé-bn\)
e/ \(\sqrt{x-2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)
\(\Leftrightarrow4+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
\(\Leftrightarrow2\sqrt{-x^2+8x-12}=x^2-8x+20\)
Đặt \(\sqrt{-x^2+8x-12}=a\left(a\ge0\right)\)thì pt thành
\(2a=-a^2+8\)
\(\Leftrightarrow a^2+2a-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=2\end{cases}}\)
\(\Leftrightarrow\sqrt{-x^2+8x-12}=2\)
\(\Leftrightarrow-x^2+8x-12=4\)
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
a/ \(4x^2+3x+3-4x\sqrt{x+3}-2\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(4x^2-4x\sqrt{x+3}+x+3\right)+\left(2x-1-2\sqrt{2x-1}+1\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x+3}\right)^2+\left(1-\sqrt{2x-1}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=\sqrt{x+3}\\1=\sqrt{2x-1}\end{cases}\Leftrightarrow}x=1\)
a)\(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\)
\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)
\(\Leftrightarrow2x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{4}\end{array}\right.\)