Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)
d,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)
Hơi tắt nhá
a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)
mà A\(\le0\)
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\) phải bằng 0 đê thỏa mãn điều kiện
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy....
b;c)I hệt câu a nên làm tương tự nhá
d)
Hơi tắt nhá
a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)
B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)
Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)
Vậy....
bài 1:
a, x + |2 - x| = 6
=> |2 - x| = 6 - x (1)
=>\(\orbr{\begin{cases}2-x=6-x\\2-x=x-6\end{cases}}\Rightarrow\orbr{\begin{cases}2=6\left(ktm\right)\\x=4\left(tm\right)\end{cases}}\)
b. |x - 7| = 7
=> \(\orbr{\begin{cases}x-7=7\\x-7=-7\end{cases}\Rightarrow\orbr{\begin{cases}x=14\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)
c, Tương tự b
bài 2:
a, Vì \(\hept{\begin{cases}\left|x+2\right|\ge0\\\left|y+5\right|\ge0\end{cases}}\forall x,y\Rightarrow\left|x+2\right|+\left|y+5\right|\ge0\) (1)
Mà |x + 2| + |y + 5| = 0 (2)
Từ (1),(2) => \(\hept{\begin{cases}x+2=0\\y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=-5\end{cases}}\)
b, tương tự a
1)
a) x + | 2 - x | = 6
\(\Rightarrow\)| 2 - x | = 6 - x
\(\Rightarrow\)\(\orbr{\begin{cases}2-x=6-x\\2-x=x-6\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}2=6\\x=4\end{cases}}\)
b) | x - 7 | = 7
x - 7 = +;- 7
\(\Rightarrow\)\(\orbr{\begin{cases}x-7=7\\x-7=-7\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=14\\x=0\end{cases}}\)
c) | x + 1 | = 5
x + 1 = +;- 5
\(\Rightarrow\)\(\orbr{\begin{cases}x+1=5\\x+1=-5\end{cases}}\)\(\Rightarrow\)\(\orbr{\begin{cases}x=4\\x=-6\end{cases}}\)
2) Tự làm :v
b,
ta có: x-12/3 + y+8/23 + z+190/27 luôn lớn hơn 0 nên không thể nhỏ hơn 0
Để: |x-12/3| + |y+8/23| + |z+190/27| > 0
=> (+) x-12/3 = 0
=> x= 12/3
(+) y+8/23 = 0
=> y = -8/23
(+) z+190/27 = 0
=> z = -190/27
Vậy x = 12/3; y = -8/23; z = -190/27
k giúp mình
làm ơn
câu a sai đề thì phải, bạn chữa lại rồi mình làm