Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2: (x-3).(y+2) = -5
Vì x, y \(\in\)Z => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}
Ta có bảng:
x-3 | 5 | -5 | -1 | 1 |
y+2 | 1 | -1 | -5 | 5 |
x | 8 | -2 | 2 | 4 |
y | -1 | -3 | -7 | 3 |
bài 3: a(a+2)<0
TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)
TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
Vậy -2<a<0
Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)
TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2
TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại
Vậy 1<a<2
100! = 1.2.3.4.5.....98.99.100
+) Tìm x:
Các số chia hết cho 26 = 64 từ 1 đến 100 là : 64 => có 1 số => có 1 x 6 = 6 thừa số 2
Các số chia hết cho 25 = 32 từ 1 đến 100 là 32; 64;96 => có 2 số chỉ chia hết cho 32 => có 2 x 5 = 10 thừa số 2
Các số chia hết cho 24 = 16 từ 1 đến 100 là 16;32;48;64;96 => có 2 số chỉ chia hết cho 16 => có 2 x 4 = 8 thừa số 2
Các số chia hết cho 23 = 8 từ 1 đến 100 là 8;16;24;...; 96 => có (96 -8) : 8 + 1 = 12 số => có 12 - 5 = 7 số chỉ chia hết cho 8
=> 7 x 3 = 21 thừa số 2
Các số chia hết cho 22 = 4 từ 1 đến 100 là: 4;8; 12;...;96 => có (96 - 4) : 4 + 1 = 24 số => có 24 - 12 = 12 số chỉ chia hết cho 4
=> có 12 x 2 = 24 thừa số 2
Các số chia hết cho 2 từ 1 đến 100 là: 2;4;6;...;96 => có (96 - 2) : 2 + 1 = 48 số => có 48 - 24 = 24 số chỉ chia hết cho 2
=> có 24 x 1 = 24 thừa số 2
Vậy trong phân tích 100! có chứa 6 + 10 + 8 + 21 + 24 + 24 = 93 thừa số 2 => x = 93
+) Tương tự, ta tìm đc y; z...
a, => x + 1 = 0 => x = -1
y - 1 = 0 => y = 1
z - 2 = 0 => z = 2
=> x,y,z thuộc { -1; 1; 2 }
Chắc lại là bài của thầy Tuân giao, ám ảnh dữ ha
\(2^x+3^y+z^z=156\)
\(\Leftrightarrow\)\(2^x+3^y+5^z=2^2+3^3+5^3\)
Suy ra \(x=2\)\(;\)\(y=3\)\(;\)\(z=3\)