K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

Co phai x=z=1;y=1/2

3 tháng 8 2018

mk sửa lại đoạn sau:

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x-1=0\\2z-x-1=0\\2y+x-z-1=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\2z-2=0\\2y-z=0\left(x-1=0\right)\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\z=1\\2y=1\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\z=1\\y=\dfrac{1}{2}\end{matrix}\right.\)

26 tháng 12 2017

=(x2+2xy+y2)+(y2-4yz+4z2)+(y2-2y+1)+(z2-2z+1)-4x-2y-4z+5

=(x+y)2-4(x+y)+4 +(y-2z)2+2(y-2z)+1 +(y-1)2+(z-1)2

=(x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\ge0\)\(\forall_{x,y,z}\)

Lai co (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\le\)0

=> (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2=0

Dau = xay ra khi x=y=z=1

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

25 tháng 8 2021

bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được

23 tháng 7 2017

\(x^2-2x+y^2+4y+5+\left(2z-3\right)^2=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+\left(2z-3\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2+\left(2z-3\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y+2\right)^2\ge0\\\left(2z-3\right)^2\ge0\end{cases}}\) nên \(\left(x-1\right)^2+\left(y+2\right)^2+\left(2z-3\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\\\left(2z-3\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=\frac{3}{2}\end{cases}}}\)

4 tháng 9 2016

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4

GTNN = 5

2) tuong tu