Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Giải:
Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)
+) \(\frac{x}{21}=4\Rightarrow x=84\)
+) \(\frac{y}{14}=4\Rightarrow y=56\)
+) \(\frac{z}{15}=4\Rightarrow z=60\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(84;56;60\right)\)
Bài 2:
Giải:
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)
\(\Rightarrowđpcm\)
BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau
BT2 là cũng vậy r ss
Ta có :
7x=9y=21z
\(\Rightarrow\frac{7x}{63}=\frac{9y}{63}=\frac{21z}{63}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
\(\Rightarrow\begin{cases}x=-27\\y=-21\\z=-9\end{cases}\)
Có:\(7x=9y=21z\)
=>\(\frac{7x}{63}=\frac{9y}{63}=\frac{21z}{63}\)
=> \(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bừng nhau ta có:
\(\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3\)
=> \(\begin{cases}x=-27\\y=-21\\z=-9\end{cases}\)
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
=> \(x=2k+1\)
\(y=3k+2\)
\(z=4k+3\)
Thay \(x=2k+1;y=3k+2;z=4k+3\) vào \(2x+3y-z=50\) ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-4\left(4k+3\right)=50\)
\(4k+2+9k+6-4k-3=50\)
\(9k+5=50\)
\(9k=45\)
\(k=5\)
\(\Rightarrow x=2k+1=2.5+1=11\)
\(y=3k+2=3.5+2=17\)
\(z=4k+3=4.5+3=23\)
Vậy \(x=11;y=17;z=23\)
x-24 =y => x-y = 24
k = 24/ (7-3) = 6
x = 42
y = 18
( tui mong các bn hỏi bài phải nắm dc kiến thức cơ bản
thì ng làm mới hứng thú vi k phải giải thích những điều
sơ đẳng nhất)
\(3x-\left|2x+1\right|=2\)
\(\Rightarrow\left|2x+1\right|=3x-2\)
Thấy: \(VT\ge0\Rightarrow VP\ge0\Rightarrow3x-2\ge0\Rightarrow x\ge\frac{2}{3}\)
\(\left(\left|2x+1\right|\right)^2=\left(3x-2\right)^2\)
\(\Rightarrow4x^2+4x+1=9x^2-12x+4\)
\(\Rightarrow-5x^2+16x-3=0\)
\(\Rightarrow15x-3-5x^2+x=0\)
\(\Rightarrow3\left(5x-1\right)-x\left(5x-1\right)=0\)
\(\Rightarrow\left(3-x\right)\left(5x-1\right)=0\)
\(\Rightarrow x=3\left(x\ge\frac{2}{3}\right)\)
\(3x-!2x+1!=2\Leftrightarrow3x-2=!2x+1!\) (1)
Hiểu nhiên VP>=0 vậy VT cũng phải >=0
Vậy: \(3x-2\ge0\Rightarrow x\ge\frac{2}{3}\) khi \(x\ge\rightarrow2x+1>0\Rightarrow!2x+1!=2x+1\) (*)
Từ lập luận (*) (1)\(\Leftrightarrow3x-2=2x+1\Leftrightarrow\left(3x-2x\right)=1+2\Rightarrow x=3\) thủa mãn (*) vậy x=3 là nghiệm duy nhất
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{7}{7}=1\)
\(\frac{x}{2}=1\Rightarrow x=2\)
\(\frac{y}{-5}=1\Rightarrow y=-5\)
Chúc bạn học tốt ^^
Vì x:2=y:(-5)
Suy ra:\(\frac{x}{2}=\frac{y}{-5}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
\(\Rightarrow\begin{cases}\frac{x}{2}=-1\\\frac{y}{-5}=-1\end{cases}\)\(\Rightarrow\begin{cases}x=-2\\y=5\end{cases}\)
Vậy x=-2;y=5
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=3k\)
\(z=5k\)
Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=27\)
\(k^3=3^3\)
\(\Rightarrow k=3\)
\(\Rightarrow x=2k=2.3=6\)
\(y=3k=3.3=9\)
\(z=5k=5.3=15\)
Vậy \(x=6;y=9;z=15\)
* Với \(a=1\) ta thấy BĐT đúng.
* Ta xét khi \(a>1\)
Hàm nghi số \(y=\) \(y=\frac{1}{a^1}=\left(\frac{1}{a}\right)^1\) nghịch biến với \(\forall t\in R,\) khi \(a>1\).
Khi đó ta có
Ta có: \(\left(x-y\right)\left(\frac{1}{a^x}-\frac{1}{a^y}\right)\le0,\forall x,y\in R\Rightarrow\frac{x}{a^x}+\frac{y}{a^y}\le\frac{x}{a^y}+\frac{y}{a^x}\) (1)
Chứng minh tương tự \(\frac{y}{a^y}+\frac{z}{a^z}\le\frac{z}{a^y}+\frac{y}{a^z}\) (2) \(\frac{z}{a^z}+\frac{x}{a^x}\le\frac{x}{a^z}+\frac{z}{a^x}\) (3)
Cộng vế với vế (1), (2) và (3) ta được \(2\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{y+z}{a^x}+\frac{z+x}{a^y}+\frac{x+y}{a^z}\) (4)
Cộng 2 vế của (4) với biểu thức \(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\) ta được
\(3\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{x+y+z}{a^x}+\frac{x+y+z}{a^y}+\frac{x+y+z}{a^z}=\left(x+y+z\right)\left(\frac{1}{a^x}+\frac{1}{a^y}+\frac{1}{a^z}\right)\)
\(2x=3y=5z=>\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\) và x-y+z=-33
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-y+z}{\frac{1}{2}-\frac{1}{3}+\frac{1}{5}}=\frac{-33}{\frac{11}{30}}=-90\)
Ta có: \(\frac{x}{\frac{1}{2}}=-90=>x=\frac{1}{2}.\left(-90\right)=-45\)
\(\frac{y}{\frac{1}{3}}=-90=>y=\frac{1}{3}.\left(-90\right)=-30\)
\(\frac{z}{\frac{1}{5}}=-90=>z=-90.\frac{1}{5}=-18\)
Vậy x=-45, y=-30, z= -18