K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2019

Có \(1999\)lẻ

\(\Rightarrow x^2+y^2\)lẻ

=> \(x\)hoặc \(y\)lẻ

Giả sử x lẻ , y chẵn

\(\Rightarrow\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)

\(\Rightarrow x^2+y^2=\left(2m+1\right)^2+\left(2n\right)^2=4m^2+4m+1+4n^2=1999\)

Do \(4m^2+4m+4n+1\)chia 4 dư 1 mà 1999 chia 4 dư 3 nên ko có x , y tm

Vậy không có x , y tm bài toán

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

10 tháng 1 2016

ta có : x-y= -9 => x =  y + 9 ( 1 ) 

y-z = 10 => z = y + 10  (2 ) 

Thay (1) và (2 ) vào z + x = 11 ta có  :

y + 9 +10 + y = 11

=> 2y + 19 = 11 

=> 2y = -8 

=> y = -4

thay y = - 4 vào (1 ) ta có x =5 vào 2 thì đk z = 6 

 

10 tháng 1 2016

>.<" **** đi nha pn 

8 tháng 1 2017

cộng hết lại

\(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=11+3+2=16\)

\(\Rightarrow2\left(x+y+z\right)=16\Rightarrow\left(x+y+z\right)=8\)

thay vào từng cái ban đầu 

11+z=8=> z=8-11=-3

3+x=8=> x=8-3=5

2+y=8=> y=8-2=6