Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x+y+xy=2
=> x+xy+y=2
=>x(y+1)+y=2
=>x(y+1)+y+1=3
=>x(y+1)+(y+1)=3
=>(y+1)(x+1)=3
Đến đây thì dễ rồi, bạn tự tìm nốt nha
b) \(\frac{27-2x}{12-x}=\frac{24-2x+3}{12-x}=\frac{2.\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
Với x>12 thì \(\frac{3}{12-x}< 0\)
Với x<12 thì \(\frac{3}{12-x}.>0\)
Phân số \(\frac{3}{12-x}\) với x<12 có tử và mẫu đều dương, tử ko đổi nên mẫu phải nhỏ nhất
=>12-x=1
=>x=11
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
\(M=\frac{xy+x+1}{xy+x}=1+\frac{1}{xy+x}\)
Để M nguyên <=> 1 chia hết cho xy +x hay xy +x là ước của 1
=> xy + x = 1 hoặc xy + x = -1
Nếu xy + x = 1 => x.(y+1) = 1 mà x, y nguyên nên x thuộc Ư(1) = {1;-1}
x = 1 => y+ 1 = 1 => y = 0
x = -1 => y + 1 = -1 => y = -2
Nếu xy + x = -1 => x.(y+1)= -1 => x thuộc Ư(1) = {1;-1}
x = 1 => y + 1 = -1 => y = -2
x = -1 => y + 1 = 1 =>y = 0
Vậy (x;y) = (1;0); (-1; -2); (1;-2); (-1;0)