Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1).
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}.\)
Có:
\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}.\)
\(\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}.\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}.\)
\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{75}\) và \(3x-7y+5z=30.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{75}=\frac{3x-7y+5z}{63-98+75}=\frac{30}{40}=\frac{3}{4}.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{21}=\frac{3}{4}\Rightarrow x=\frac{3}{4}.21=\frac{63}{4}\left(KTM\right)\\\frac{y}{14}=\frac{3}{4}\Rightarrow y=\frac{3}{4}.14=\frac{21}{2}\left(KTM\right)\\\frac{z}{15}=\frac{3}{4}\Rightarrow z=\frac{3}{4}.15=\frac{45}{4}\left(KTM\right)\end{matrix}\right.\)
Vậy không có cặp số \(\left(x;y;z\right)\) nào thỏa mãn đề bài.
Chúc bạn học tốt!
a: x-y+xy-9=0
=>x+xy-y-1=8
=>(y+1)(x-1)=8
=>(x-1;y+1) thuộc {(1;8); (8;1); (-1;-8); (-8;-1); (2;4); (4;2); (-2;-4); (-4;-2)}
=>(x,y) thuộc {(2;7); (9;0); (0;-9); (-7;-2); (3;3); (5;1); (-1;-5); (-3;-3)}
b: xy-3y-5x+10=0
=>y(x-3)-5x+15=5
=>(x-3)(y-5)=5
=>(x-3;y-5) thuộc {(1;5); (5;1); (-1;-5); (-5;-1)}
=>(x,y) thuộc {(4;10); (8;6); (2;0); (-2;4)}
c: 6xy-3x-2y-1=0
=>3x(2y-1)-2y+1-2=0
=>(2y-1)(3x-1)=2
=>(3x-1;2y-1) thuộc {(2;1); (-2;-1)}
=>(x,y) thuộc {(1;1)}
1 , sai đề
2/ xy-x-y+1=0
x(y-1)-(y-1)=0
(y-1)(x-1)=0
->y-1=o hoặc x-1=0
y-1=0 y=1
x-1=0 x=1
vậy x=y=1
3,