Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2^6< 2^6+2^x+2^{3y}=A^2< 10000\)
=> \(8^2< 2^6+2^x+2^{3y}=A^2< 100^2\)
Vì A thuộc N.
Xét trường hợp: \(2^6+2^x+2^{3y}=9^2\)
=> \(2^x+2^{3y}=17\)là số lẻ
Do x, y thuộc N nên xảy ra hai trường hợp hoặc là x=0, hoặc là y=0
+) Với x=0
ta có: \(1+2^{3y}=17\Leftrightarrow2^{3y}=16=2^4\Leftrightarrow3y=4\Leftrightarrow y=\frac{4}{3}\)( loại vì y là số tự nhiên)
+) Với y=0
ta có: \(2^x+1=17\Leftrightarrow2^x=16=2^4\Leftrightarrow x=4\)(tm)
Khi đó x+y=4
Mà đề bài bảo tìm giá trị nhỏ nhất của x+y, x, y thuộc N
Xét các trường hợp :
+) y=0, x<4 loại
+) y=1, x<3 loại
+) y=2, x=0 => \(2^6+2^0+2^6=129\)( loại vì ko p là số chính phương)
+) y=2, x=1 => \(2^6+2+2^6=130\)(loại)
+) y=3, x=0 => \(2^6+2^0+2^9=577\) ( loại)
Vậy giá trị nhỏ nhất cần tìm là x+y=4
a) Ta có:+) \(\frac{12}{16}=\frac{-x}{4}\) <=> 12.4 = 16.(-x)
<=> 48 = -16x
<=> x = 48 : (-16) = -3
+) \(\frac{12}{16}=\frac{21}{y}\) <=> 12y = 21.16
<=> 12y = 336
<=> y = 336 : 12 = 28
+) \(\frac{12}{16}=\frac{z}{-80}\) <=> 12. (-80) = 16z
<=> -960 = 16z
<=> z = -960 : 16 = -60
b) Ta có: \(\frac{x+3}{7+y}=\frac{3}{7}\) <=> (x + 3).7 = 3(7 + y)
<=> 7x + 21 = 21 + 3y
<=> 7x = 3y
<=> \(\frac{x}{3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{7}=\frac{x+y}{3+7}=\frac{20}{10}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{7}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\end{cases}}\)
Vậy ...
*với y=0 => để x+y nhỏ nhất <=> x nhỏ nhất => A^2 nhỏ nhất
mà A^2= 65+ 2^x
=> A^2 lẻ
=> A^2= 81 => 2^x=16 => x=4
khi đó x+y=4
*với x=0, lập luận tương tự => A^2= 65+ 8^y
+, A^2=81 => 8^y=16 => ko có y...
+, A^2=121 => 8^y=56 => ko có
+, A^2=169 => 8^y=104 => ko có...
(đến đây ko xét A^2 nữa vì nếu thỏa mãn thì x+y nhỏ nhất cũng =4)
+, với y khác 0 => A^2 chẵn mặt khác 2^x < 2^3y với x;y khác 0 và x+y<4
=> để x+y nhỏ nhất <=> x nhỏ nhất và y lớn nhất
tức y thuộc {1;2} và x thuộc {0;1}
=> 64<A^2 < 64+64+2=130
=> A^2=100 => 2^x+8^y= 36 => y=1 => 2^x=28 => loại
vậy...
Câu hỏi của Trần Đại Nghĩa - Toán lớp 6 - Học toán với OnlineMath
Tham khảo bài của cô Chi nhé
Bài 1 :
Lý luận chung cho cả 2 câu a) và b) :
Vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0, mà tổng của chúng lại bằng 0
a) \(\Rightarrow\hept{\begin{cases}x-2y=0\\y-1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b) \(\Rightarrow\hept{\begin{cases}x-3=0\\x-2y-5=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}\)
\(5x+2y+3\left(x+y\right)=55\)
\(\Leftrightarrow5x+2y+3x+3y=55\)
\(\Leftrightarrow8x+6y=55\)
\(\Leftrightarrow2\left(4x+3y\right)=55\)
\(\Leftrightarrow4x+3y=\frac{55}{2}\)
xy + x + y = 35
<=> x(y+1) + (y+1) = 36
<=> (y+1)(x+1) = 36
=> x+1 là ước của 36
sau đó bạn tự giải tiếp nhé, mk k biết có đúng hay k nữa
Chúc bạn làm bài tốt
3x-4y=-21
3x = 4y-21
x= 4y/3 -7
để x\(\in\)\(ℕ^∗\)thì x >0 và 4y/3 là số tự nhiên
hay 4y/3 - 7 > 0 4y chia hết cho 3 mà ƯCLN (4;3) =1
4y/3 > 7 nên y chia hết cho 3 và 0<y<10
4y > 21 y\(\in\)(3;6;9)
y > 5,25
=> y= 6 hoặc y=9
nếu y =6 thì x=1 ( thỏa mãn x\(\inℕ^∗\)và x<10)
nếu y=9 thì x=5 ( thỏa mãn x\(\inℕ^∗\)và x<10)
vậy có 2 cặp số (x;y) thỏa mãn là ( 1;6) và (5;9)