K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

a/ \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{8}-\dfrac{y}{4}=\dfrac{5}{x}\)

\(\Rightarrow\dfrac{1}{8}-\dfrac{2y}{8}=\dfrac{5}{x}\)

\(\Leftrightarrow\dfrac{1-2y}{8}=\dfrac{5}{x}\)

\(\Leftrightarrow\left(1-2y\right)x=40\)

\(x,y\in Z;1-2y\in Z;1-2y,x\inƯ\left(40\right)\)

\(1-2y⋮2̸\)

Ta có bảng :

\(y\) \(1-2y\) \(x\) \(Đk\) \(x,y\in Z\)
\(0\) \(1\) \(40\) tm
\(1\) \(-1\) \(-40\) tm
\(8\) \(5\) \(8\) tm
\(3\) \(-5\) \(-8\) tm

Vậy .................

24 tháng 9 2017

Ta có :

\(25-y^2=8\left(x-2009\right)^2\)

\(\Leftrightarrow8\left(x-2009\right)^2=25-y^2\)

\(\Leftrightarrow8\left(x-2009\right)^2+y^2=25\)\(\left(1\right)\)

\(y^2\ge0\Leftrightarrow\left(x-2009\right)^2\le\dfrac{25}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2009\right)^2=0\\\left(x-2009\right)^2=1\end{matrix}\right.\)

+) Với \(\left(x-2009\right)^2=0\) thay vào \(\left(1\right)\Leftrightarrow y^2=25\Leftrightarrow\)\(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)

+) Với \(\left(x-2009\right)^2=1\) thay vào \(\left(1\right)\Leftrightarrow y^2=17\left(loại\right)\)

Vậy ..

9 tháng 8 2017

\(\dfrac{x}{4}=\dfrac{18}{x+1};x^2+1=72\)

\(\)\(\Rightarrow x\left(x+1\right)=18.4\)

\(\Rightarrow x^2+x=72\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+1=72\\x^2+x=72\end{matrix}\right.\)

\(\Rightarrow x^2+1=x^2+x\)

\(\Rightarrow x=1\)

11 tháng 8 2017

thanks, bn cs thể làm giúp mik phần b nữa đc hông?

22 tháng 7 2017

\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)

\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)

\(\Rightarrow x\left(1-2y\right)=40\)

\(\Rightarrow x;1-2y\in U\left(40\right)\)

\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)

Mà 1-2y lẻ nên:

\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)

b tương tự.

c) \(\left(x+1\right)\left(x-2\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)

d tương tự

21 tháng 12 2017

1,a/ Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=-2\\\dfrac{y}{5}=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-10\end{matrix}\right.\)

Vậy ...

b, Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{7}=\dfrac{y}{5}=\dfrac{x-y}{7-5}=\dfrac{8}{2}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{7}=4\\\dfrac{y}{5}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=28\\y=20\end{matrix}\right.\)

Vậy ...

2/a, Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{56}{14}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=4\\\dfrac{y}{5}=4\\\dfrac{z}{7}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=10\\z=28\end{matrix}\right.\)

Vậy ...

b/ \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{8}\)

\(\Leftrightarrow\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}\)

Theo t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{6}=\dfrac{y}{5}=\dfrac{z}{8}=\dfrac{2x+y-z}{6+5-8}=\dfrac{12}{3}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x}{6}=4\\\dfrac{y}{5}=4\\\dfrac{z}{8}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=20\\z=32\end{matrix}\right.\)

Vậy ..

21 tháng 12 2017

Bài Giải:

Bài 1:

a) Theo đề bài, ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\)và x+y=-4

Áp dụng tính chất của dãy tỉ số bằng nhau

Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{-14}{7}=-2\)

Suy ra: x = 2 . (-2) =-4

y = 5 . (-2) =-10

Vậy: x = -4 và y = -10

Mấy câu sau cậu cứ dựa vào bài trên để giải nhé!

Tick cho Phong nhé:>

Yêu nhiều>3

#Phong_419

28 tháng 10 2018

Bài 1:

a) \(\dfrac{x}{15}=\dfrac{-2}{3,5}\)\(\Rightarrow x=\dfrac{15\cdot\left(-2\right)}{3,5}=-\dfrac{60}{7}\)

b) \(\dfrac{16}{x}=\dfrac{x}{25}\)\(\Rightarrow x^2=16\cdot25\Rightarrow x^2=400\Rightarrow x=\pm20\)

c) \(\dfrac{0,5}{0,7}=\dfrac{-0,1}{5x}\)\(\Rightarrow5x=\dfrac{\left(-0,1\right)\cdot0,7}{0,5}=-\dfrac{7}{50}\Rightarrow x=\dfrac{-\dfrac{7}{50}}{5}=-0,028\)

28 tháng 10 2018

Bài 3:

a) Theo đề, ta có:

\(\dfrac{x}{5}=\dfrac{y}{25}\)\(x+y=60\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{5}=\dfrac{y}{25}=\dfrac{x+y}{5+25}=\dfrac{60}{30}=2\)

\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=10\)

\(\Rightarrow\dfrac{y}{25}=2\Rightarrow y=50\)

b) Theo đề ta có:

\(5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)\(x-y=-5\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{-5}{-2}=2,5\)

\(\Rightarrow\dfrac{x}{3}=2,5\Rightarrow x=7,5\)

\(\Rightarrow\dfrac{y}{5}=2,5\Rightarrow y=12,5\)

c) Theo đề ta có:

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(y+z-x=8\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}=\dfrac{y+z-x}{4+6-2}=\dfrac{8}{8}=1\)

\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)

\(\Rightarrow\dfrac{y}{4}=1\Rightarrow y=4\)

\(\Rightarrow\dfrac{z}{6}=1\Rightarrow z=6\)

d) Theo đề ta có

\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)

\(\dfrac{y}{6}=\dfrac{z}{8}\Rightarrow\dfrac{y}{12}=\dfrac{z}{16}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)\(x+y-z=50\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{x+y-z}{9+12-16}=\dfrac{50}{5}=10\)

\(\Rightarrow\dfrac{x}{9}=10\Rightarrow x=90\)

\(\Rightarrow\dfrac{y}{12}=10\Rightarrow y=120\)

\(\Rightarrow\dfrac{z}{16}=10\Rightarrow z=160\)

e) Theo đề ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)\(2x+3y+5z=86\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{2x+3y+5z}{2\cdot3+3\cdot4+5\cdot5}=\dfrac{86}{43}=2\)

\(\Rightarrow\dfrac{x}{3}=2\Rightarrow x=6\)

\(\Rightarrow\dfrac{y}{4}=2\Rightarrow y=8\)

\(\Rightarrow\dfrac{z}{5}=2\Rightarrow z=10\)

f) Theo đề ta có

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\)\(x+y+z=-28\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x+y+z}{2+5+7}=\dfrac{-28}{14}=-2\)

\(\Rightarrow\dfrac{x}{2}=-2\Rightarrow x=-4\)

\(\Rightarrow\dfrac{y}{5}=-2\Rightarrow y=-10\)

\(\Rightarrow\dfrac{z}{7}=-2\Rightarrow z=-14\)

g) Theo đề ta có

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}\)\(2x^2+y^2+3z^2=316\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{2}=\dfrac{2x^2+y^2+3z^2}{2\cdot3^2+7^2+3\cdot2^2}=\dfrac{316}{79}=4\)

\(\Rightarrow\dfrac{x}{3}=4\Rightarrow x=12\)

\(\Rightarrow\dfrac{y}{7}=4\Rightarrow y=28\)

\(\Rightarrow\dfrac{z}{2}=4\Rightarrow z=8\)

27 tháng 9 2017

Bài 1:

\(a,\dfrac{x}{3}=\dfrac{y}{7}\)\(x+y=20\)

\(=\dfrac{x+y}{3+7}=\dfrac{20}{10}=2\)

\(\Rightarrow x=2.3=6\)

\(y=2.7=14\)

Vậy \(x=6\)\(y=14\)

\(b,\dfrac{x}{5}=\dfrac{y}{2}\)\(x-y=6\)

\(=\dfrac{x-y}{5-2}=\dfrac{6}{3}=2\)

\(\Rightarrow x=2.5=10\)

\(y=2.2=4\)

Vậy \(x=10\)\(y=4\)

\(c,\dfrac{x}{7}=\dfrac{18}{14}\)

Từ tỉ lệ thức trên ta có:

\(14x=7.18\)

\(x=\dfrac{7.18}{14}\)

\(x=9\)

Vậy \(x=9\)

\(d,6:x=1\dfrac{3}{4}:5\)

\(6:x=\dfrac{7}{20}\)

\(x=6:\dfrac{7}{20}\)

\(x=\dfrac{120}{7}\)

Vậy \(x=\dfrac{120}{7}\)

\(e,\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{6}\)\(x-y+z=8\)

\(=\dfrac{x-y+z}{2-4+6}=\dfrac{8}{4}=2\)

\(\Rightarrow x=2.2=4\)

\(y=2.4=8\)

\(z=2.6=12\)

Vậy \(x=4;y=8;z=12\)

27 tháng 9 2017

a, \(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{x+y}{3+7}=\dfrac{1}{2}\)

Từ đó suy ra x=1,5; y=3,5

b,\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x-y}{5-2}=\dfrac{1}{2}\)

Từ đó suy ra x=2,5; y=1

c,\(\dfrac{x}{7}=\dfrac{18}{14}\Leftrightarrow\dfrac{x}{7}=\dfrac{9}{7}\Rightarrow x=9\)

d,\(\dfrac{6}{x}=\dfrac{\dfrac{7}{4}}{5}\Leftrightarrow\dfrac{6}{x}=\dfrac{24}{7}\left(\dfrac{\dfrac{7}{4}}{5}\right)\Leftrightarrow\dfrac{6}{x}=\dfrac{6}{\dfrac{120}{7}}\Rightarrow x=\dfrac{120}{7}\)

e,\(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{8}=\dfrac{x-y+z}{2-4+8}=\dfrac{4}{3}\)

Từ đó suy ra x=\(\dfrac{8}{3}\); y=\(\dfrac{16}{3}\); z=\(\dfrac{32}{3}\)

3 tháng 11 2018

a) \(\dfrac{x}{5}=\dfrac{y}{6};\dfrac{y}{8}=\dfrac{z}{7}\)\(x+y-z=69\)

Theo đề bài, ta có:

\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{5}\times\dfrac{1}{8}=\dfrac{y}{6}\times\dfrac{1}{8}\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}\)(1)

\(\dfrac{y}{8}=\dfrac{z}{7}\Rightarrow\dfrac{y}{8}\times\dfrac{1}{6}=\dfrac{z}{7}\times\dfrac{1}{6}\Rightarrow\dfrac{y}{48}=\dfrac{z}{42}\)(2)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Rightarrow\dfrac{x}{40}=\dfrac{y}{48}=\dfrac{z}{42}=\dfrac{x+y-z}{40+48-42}=\dfrac{69}{46}=\dfrac{3}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{40}=\dfrac{3}{2}\Rightarrow x=\dfrac{40\times3}{2}=60\\\dfrac{y}{48}=\dfrac{3}{2}\Rightarrow y=\dfrac{48\times3}{2}=72\\\dfrac{z}{42}=\dfrac{3}{2}\Rightarrow z=\dfrac{42\times3}{2}=63\end{matrix}\right.\)

Vậy \(\Rightarrow\left\{{}\begin{matrix}x=60\\y=72\\z=63\end{matrix}\right.\)

31 tháng 10 2018

Ta có:\(\dfrac{x}{5}=\dfrac{y}{6}\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}\)(Nhân 2 vế với \(\dfrac{1}{4}\))

\(\dfrac{y}{8}=\dfrac{x}{7}\Rightarrow\dfrac{y}{24}=\dfrac{z}{21}\)(Nhân 2 vế với \(\dfrac{1}{3}\))

\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}\)và x+y-z=6

Áp dụng tính chất dãy tỉ số bằng nhau. Ta có:

\(\dfrac{x}{20}=\dfrac{y}{24}=\dfrac{z}{21}=\dfrac{x+y-z}{20+24-21}=\dfrac{69}{23}=3\)

\(\dfrac{x}{20}=3\Rightarrow x=20.3=60\)

\(\dfrac{y}{24}=3\Rightarrow y=24.3=72\)

\(\dfrac{z}{21}=3\Rightarrow z=3.21=63\)

Vậy x=60; y=72; z=63

23 tháng 11 2017

Bài 4 câu c) và x-y+y hay x-y+z vậy bạn

24 tháng 11 2017

1 a) \(\dfrac{\left(-2\right)}{5}\)= \(\dfrac{-6}{15}\); \(\dfrac{15}{-6}\)= \(\dfrac{5}{-2}\); \(\dfrac{-6}{-2}\)= \(\dfrac{15}{5}\); \(\dfrac{-2}{-6}\)= \(\dfrac{5}{15}\)

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{6}=\dfrac{z}{21}=\dfrac{x+y+z}{10+6+21}=\dfrac{25}{37}\)

Do đó: x=250/37; y=150/37; z=525/37

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Ta có: x/2=y/3

nên x/8=y/12(1)

Ta có: y/4=z/5

nên y/12=z/15(2)

Từ (1) và (2) suy ra x/8=y/12=z/15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)

Do đó: x=16; y=24; z=30

3 tháng 2 2019

\(a,A=\dfrac{\dfrac{3}{4}-\dfrac{3}{11}+\dfrac{3}{13}}{\dfrac{5}{7}-\dfrac{5}{11}+\dfrac{5}{13}}+\dfrac{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}}{\dfrac{5}{4}-\dfrac{5}{6}+\dfrac{5}{8}}\\ A=\dfrac{\dfrac{405}{572}}{\dfrac{645}{1001}}+\dfrac{\dfrac{5}{12}}{\dfrac{25}{24}}\\ A=\dfrac{189}{172}+\dfrac{2}{5}\\ A=\dfrac{1289}{860}\)