Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=3x^2+11y^2-2xy-2x+6y-1\)
\(\Leftrightarrow A=\left(x^2+y^2+\frac{1}{4}-2xy-x+y\right)+2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+10\left(y^2+\frac{1}{2}y+\frac{1}{16}\right)-2\)
\(\Leftrightarrow A=\left(x-y-\frac{1}{2}\right)^2+2\left(x-\frac{1}{4}\right)^2+10\left(y+\frac{1}{4}\right)^2-2\)
Thấy rằng \(\hept{\begin{cases}\left(x-y-\frac{1}{2}\right)^2\ge0\\\left(x-\frac{1}{4}\right)^2\ge0\\\left(y+\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow A\ge-2\)
Vậy \(A_{min}=-2\Leftrightarrow\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{4}=0\\y+\frac{1}{4}=0\end{cases}\Leftrightarrow x=\frac{1}{4};y=\frac{-1}{4}}\)
1/ \(\Leftrightarrow\left\{{}\begin{matrix}2x^2-4xy+2x-4y+6=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
\(\Rightarrow x^2+y^2-2xy+4x-4y+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+4\left(x-y\right)+4=0\)
\(\Leftrightarrow\left(x-y+2\right)^2=0\)
\(\Rightarrow y=x+2\)
Thay vào 1 trong 2 pt ban đầu là xong
2/ \(x^2-\left(y+2\right)x-6y^2+11y-3=0\)
\(\Delta=\left(y+2\right)^2-4\left(-6y^2+11y-3\right)\)
\(=25y^2-40y+16=\left(5y-4\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{y+2+5y-4}{2}\\x=\frac{y+2-5y+4}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3y-1\\x=-2y+3\end{matrix}\right.\)
Thay vào pt 2 là được
c/ \(S=\frac{2}{2\sqrt{1}}+\frac{2}{2\sqrt{2}}+\frac{2}{2\sqrt{3}}+...+\frac{2}{2\sqrt{100}}\)
\(S< 1+\frac{2}{1+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{99}+\sqrt{100}}\)
\(S< 1+2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)
\(S< 1+2\left(\sqrt{100}-1\right)=19\)
\(S>\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{2}+\sqrt{3}}+...+\frac{2}{\sqrt{101}-\sqrt{100}}\)
\(S>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\right)\)
\(S>2\left(\sqrt{101}-1\right)>2\left(\sqrt{100}-1\right)=18\)
\(\Rightarrow18< S< 19\Rightarrow S\) nằm giữa 2 số tự nhiên liên tiếp nên S không phải số tự nhiên
b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19
=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)
thay 3x=15+9y zô (4) ta đc
\(15+9y-7y=19\)
=>\(2y=4=>y=2\)
\(=>x-3.2=5=>x=11\)
thay x=11 , y=6 ta có
\(4.11+2=13.m-32\)
=> m=6
b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)
\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)
thay zô (4) , rồi làm biến đổi như câu a) nhá
xong => y=m-4
=> x=5+3y
=> x=5+3(m-4)=3m-7
\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)
c) Thay x=3m-7 ; y=m-4 ta có
\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)
\(=9m^2-42m+49+6m-24+2030\)
\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)
\(=\left(3m-6\right)^2+2019\ge2019\forall m\)
dấu = xảy ra khi 3m-6=0 => m=2
zậy ...
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
\(A=2x^2+9y^2-6xy-6x-12y+2036\)
\(=x^2-10x+25+x^2-6xy+9y^2+4x-12y+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y\right)^2+4\left(x-3y\right)+4+2007\)
\(=\left(x-5\right)^2+\left(x-3y+2\right)^2+2007\)
\(\Rightarrow A\ge2007\)
Dấu "=" xảy ra khi \(x=5,y=\frac{7}{3}\)
\(\hept{\begin{cases}x^2-xy-6y^2-2x+11y-3=0\left(1\right)\\x^2+y^2=5\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left(x-3y+1\right)\left(x+2y-3\right)=0\)
- Nếu \(x-3y+1=0\Rightarrow x=-1+3y\) thay vào (2) ta được:
\(\left(-1+3y\right)^2+y^2=0\Rightarrow10y^2-6y+1=0\)
\(\Delta=\left(-6\right)^2-4\left(10\cdot1\right)=-4< 0\)(vô nghiệm)
- Nếu \(x+2y-3=0\Rightarrow x=3-2y\)thay vào (2) ta được:
\(\left(3-2y\right)^2+y^2=0\)\(\Rightarrow5y^2-12y+9=0\)
\(\Delta=\left(-12\right)^2-4\left(5\cdot9\right)=-36< 0\)(vô nghiệm)
Vậy hpt trên vô nghiệm
P=3x2+11y2-2xy-2x+6y-1=(x2+9y2-6xy)-2(x-3y)+1+2x2+2y2+4xy -2
=(x-3y-1)2+2(x+y)2-2\(\ge-2\)
MinP=-2 khi x=1/4 và y=-1/4