Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x}{4}=\dfrac{y}{14}\)=k. Ta có: x= 4k; y= 14k
xy= 56 ⇒ 4k. 14k = 56 ⇒ 56k2= 56 ⇒ k2= 56: 56= 1⇒ k=1
hoặc k= -1
TH1: k=1. x=4k ⇒ x=4.1=4
y=14k ⇒ y=14.1= 14
TH 2: k= -1. x= 4k⇒ x= 4. (-1)= -4
y= 14k⇒ y= 14.(-1)= -14
Vậy: x =4 và y=14
hoặc x= -4 và y = -14
Ta có: \(3x=4y=5z\) => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x+y-z}{\frac{2}{3}+\frac{1}{4}-\frac{1}{5}}=\frac{43}{\frac{43}{60}}=60\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=60\\\frac{y}{\frac{1}{4}}=60\\\frac{z}{\frac{1}{5}}=60\end{cases}}\) => \(\hept{\begin{cases}x=60\cdot\frac{1}{3}=20\\y=60\cdot\frac{1}{4}=15\\z=60\cdot\frac{1}{5}=12\end{cases}}\)
Vậy ...
a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10
biến đổi:
\(\frac{x}{19}=\frac{5x}{95}\)
=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)
(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)
= \(\frac{5x-y-z}{95-5-95}\)
= \(\frac{-10}{-5}=2\)
* \(\frac{x}{19}=2\)=> \(x=19.2=38\)
* \(\frac{y}{5}=2\)=> \(y=2.5=10\)
* \(\frac{z}{95}=2\)=> \(z=95.2=190\)
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)
\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}}\)
Vậy.....
Vì 3x=2y, 4x=2z
3x=2y=\(\frac{x}{2}=\frac{y}{3}\)(1)
4x=2z=\(\frac{x}{2}=\frac{z}{4}\)(2)
Từ (1) và (2)=> \(\frac{y}{3}=\frac{x}{2}=\frac{z}{4}\)
Theo tính chất dãy tỉ số bằng nhau.
\(\Rightarrow\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=\frac{z+y+z}{2+3+4}=\frac{27}{9}=3\)
\(\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)
Vậy x=6
y=9
z=12
Bài 1:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{2+4}=\frac{-12}{6}=-2\)
\(\Rightarrow x=-4,y=-8,z=-10\)
Vậy \(x=-4,y=-8,z=-10\)
Bài 2:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{2y}{8}=\frac{2y-x}{8-3}=\frac{10}{5}=2\)
\(\Rightarrow x=6,y=8\)
Vậy \(x=6,y=8\)
1. Từ x/2=y/4=z/5 và x+y=-12
=>x/2=y/4=x+y/2+4=-12/6=-2
=>x/2=-2=>x=-4
=>y/4=-2=>y=-8
=>z/5=-2=>z=-10
Vậy x=-4;y=-8;z=-10
2.Từ x/3=y/4 và 2y-x=10
=>x/3=y/4=2y/8=2y-x/8-3=10/5=2
=>x/3=2=>x=6
=>y/4=2=>y=8
Vậy x=6;y=8
MÀY vào câu hỏi tương tự .
Tao không rảnh
Ok?
Đặt \(\frac{x}{4}\)= \(\frac{y}{14}\)= k ( k khác 0 )
=> x = 4k và y = 14k thay vào biểu thức x.y=56 ta có
4k . 14k = 56
56k\(^2\)= 56
k2= 56 :56 = 1
=> k = 1 hoặc k = -1.
Với k=1 khi đó x = 4k = 4.1 =4
y = 14.1 =14
Với k = -1 thì x = -4 và y = -14
vậy x = 4 , y=14 và x = -4, y = -14