K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2018

MÀY vào câu hỏi tương tự .

Tao không rảnh

Ok?

30 tháng 9 2018

Đặt \(\frac{x}{4}\)\(\frac{y}{14}\)= k ( k khác 0 )

=> x = 4k và y = 14k thay vào biểu thức x.y=56 ta có 

                    4k . 14k = 56

                         56k\(^2\)= 56

                              k2= 56 :56 = 1

=> k = 1 hoặc k = -1.

Với k=1 khi đó x = 4k = 4.1 =4

                        y = 14.1 =14

      Với k = -1 thì x = -4 và y = -14 

vậy x = 4 , y=14 và x = -4, y = -14

30 tháng 9 2018

Đặt \(\dfrac{x}{4}=\dfrac{y}{14}\)=k. Ta có: x= 4k; y= 14k

xy= 56 ⇒ 4k. 14k = 56 ⇒ 56k2= 56 ⇒ k2= 56: 56= 1⇒ k=1

hoặc k= -1

TH1: k=1. x=4k ⇒ x=4.1=4

y=14k ⇒ y=14.1= 14

TH 2: k= -1. x= 4k⇒ x= 4. (-1)= -4

y= 14k⇒ y= 14.(-1)= -14

Vậy: x =4 và y=14

hoặc x= -4 và y = -14

1 tháng 11 2019

Ta có: \(3x=4y=5z\) => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x+y-z}{\frac{2}{3}+\frac{1}{4}-\frac{1}{5}}=\frac{43}{\frac{43}{60}}=60\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=60\\\frac{y}{\frac{1}{4}}=60\\\frac{z}{\frac{1}{5}}=60\end{cases}}\) => \(\hept{\begin{cases}x=60\cdot\frac{1}{3}=20\\y=60\cdot\frac{1}{4}=15\\z=60\cdot\frac{1}{5}=12\end{cases}}\)

Vậy ...

7 tháng 10 2016

a, \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\); 5x-y-z=-10

biến đổi: 
\(\frac{x}{19}=\frac{5x}{95}\)

=> \(\frac{x}{19}=\frac{y}{5}=\frac{z}{95}\)

(=) \(\frac{5x}{95}=\frac{y}{5}=\frac{z}{95}\)

= \(\frac{5x-y-z}{95-5-95}\)

= \(\frac{-10}{-5}=2\)

* \(\frac{x}{19}=2\)=> \(x=19.2=38\)

* \(\frac{y}{5}=2\)=> \(y=2.5=10\)

* \(\frac{z}{95}=2\)=> \(z=95.2=190\)

7 tháng 10 2016

nè Khoa ơi câu b có đề ko zợ?

2 tháng 10 2018

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\left(1\right)\)

\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}}\)

Vậy.....

Vì 3x=2y, 4x=2z

3x=2y=\(\frac{x}{2}=\frac{y}{3}\)(1)

4x=2z=\(\frac{x}{2}=\frac{z}{4}\)(2)

Từ (1) và (2)=> \(\frac{y}{3}=\frac{x}{2}=\frac{z}{4}\)

Theo tính chất dãy tỉ số bằng nhau.

\(\Rightarrow\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=\frac{z+y+z}{2+3+4}=\frac{27}{9}=3\)

\(\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{4}=3\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=12\end{cases}}\)

Vậy x=6

       y=9

       z=12

11 tháng 10 2016

Bài 1:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{2+4}=\frac{-12}{6}=-2\)

\(\Rightarrow x=-4,y=-8,z=-10\)

Vậy \(x=-4,y=-8,z=-10\)

Bài 2:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{2y}{8}=\frac{2y-x}{8-3}=\frac{10}{5}=2\)

\(\Rightarrow x=6,y=8\)

Vậy \(x=6,y=8\)

11 tháng 10 2016

1. Từ x/2=y/4=z/5 và x+y=-12

=>x/2=y/4=x+y/2+4=-12/6=-2

=>x/2=-2=>x=-4

=>y/4=-2=>y=-8

=>z/5=-2=>z=-10

Vậy x=-4;y=-8;z=-10

2.Từ x/3=y/4 và 2y-x=10

=>x/3=y/4=2y/8=2y-x/8-3=10/5=2

=>x/3=2=>x=6

=>y/4=2=>y=8

Vậy x=6;y=8