K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2016

Bài 1:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{2+4}=\frac{-12}{6}=-2\)

\(\Rightarrow x=-4,y=-8,z=-10\)

Vậy \(x=-4,y=-8,z=-10\)

Bài 2:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{4}=\frac{2y}{8}=\frac{2y-x}{8-3}=\frac{10}{5}=2\)

\(\Rightarrow x=6,y=8\)

Vậy \(x=6,y=8\)

11 tháng 10 2016

1. Từ x/2=y/4=z/5 và x+y=-12

=>x/2=y/4=x+y/2+4=-12/6=-2

=>x/2=-2=>x=-4

=>y/4=-2=>y=-8

=>z/5=-2=>z=-10

Vậy x=-4;y=-8;z=-10

2.Từ x/3=y/4 và 2y-x=10

=>x/3=y/4=2y/8=2y-x/8-3=10/5=2

=>x/3=2=>x=6

=>y/4=2=>y=8

Vậy x=6;y=8

6 tháng 9 2016

bạn vào link này xem nhé

http://olm.vn/hoi-dap/question/97037.html

6 tháng 9 2016

minh ko tin dc ban oi

29 tháng 9 2016

sai cả hai câu rồi kìa !

29 tháng 9 2016

a) \(\frac{x}{7}=\frac{18}{14}\)

\(\Rightarrow\frac{x}{7}=\frac{9}{7}\)

\(\Rightarrow x=7\)

Vậy x=7

b)\(6:x=1\frac{3}{4}:5\)

\(\frac{6}{x}=\frac{7}{4}:5\)

\(\frac{6}{x}=\frac{7}{20}\)

\(\Rightarrow6.20=7x\)

\(\Rightarrow120=7.x\)

\(\Rightarrow x=\frac{120}{7}\)

Vậy \(x=\frac{120}{7}\)

 

16 tháng 8 2016

MK biết làm nhưng mk ko biết vẽ hình

16 tháng 8 2016

-------------------------------------- VẼ VẠCH KẺ NHƯ THẾ NÀY NÈ

4 tháng 11 2016

Ta có : \(M\) là trung điểm của \(AB\) \(\Rightarrow MA=MB\)

Vậy \(MA=MB\)

21 tháng 11 2016

Có thể bạn Trang Trần đã biết đáp án nhưng phải trình bày ra sao thôi, thỉnh thoảng mình cũng như vậy màleuleu

23 tháng 10 2016

mỗi chỗ # chứ bn

23 tháng 10 2016

thi bán kì là j z bn???

9 tháng 10 2016

Ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)\(\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

\(\Rightarrow\begin{cases}a^2=4.4=16\\b^2=4.9=36\\c^2=4.32:2=64\end{cases}\)\(\Rightarrow\begin{cases}a\in\left\{4;-4\right\}\\b\in\left\{6;-6\right\}\\c\in\left\{8;-8\right\}\end{cases}\)

Vậy các cặp giá trị (a;b;c) tương ứng thỏa mãn là: (4;6;8) ; (-4;-6;-8)

9 tháng 10 2016

\(\frac{a}{2}=\frac{a^2}{2^2}=\frac{a^2}{4}\)

\(\frac{b}{3}=\frac{b^2}{3^2}=\frac{b^2}{9}\)

\(\frac{c}{4}=\frac{2c^2}{2\times4^2}=\frac{2c^2}{32}\)

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)

Áp dụng tính chất tỉ số bằng nhau, ta có:

\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

\(\left[\begin{array}{nghiempt}\frac{a^2}{4}=4\\\frac{b^2}{9}=4\\\frac{2c^2}{32}=4\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a^2=16\\b^2=36\\c^2=64\end{array}\right.\)

\(\left[\begin{array}{nghiempt}a=\pm4\\b=\pm6\\c=\pm8\end{array}\right.\)

29 tháng 8 2017

lê tiến trường

\(\left|x-564\right|=532\)

\(\Rightarrow\left[{}\begin{matrix}x-564=532\\x-564=-532\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=532+564=1096\\x=\left(-532\right)+564=32\end{matrix}\right.\)

Vậy x = 1096 và x = 32

29 tháng 8 2017

TH1: x-564=532

x= 532+564

x= 1098

TH2: x-564=-532

x= -532+564

x= 34

X thuộc( phải bằng dau) \(\left\{34,1098\right\}\)

12 tháng 12 2016

đưa nick đây t đổi cho ko lấy đâu

12 tháng 12 2016

no no no

tui ko phải là ko bít đổi mà là ko đổi đc !!!

2 tháng 10 2016

* Với \(a=1\) ta thấy BĐT đúng.

* Ta xét khi \(a>1\)

Hàm nghi số \(y=\) \(y=\frac{1}{a^1}=\left(\frac{1}{a}\right)^1\) nghịch biến với \(\forall t\in R,\) khi \(a>1\).

Khi đó ta có 

Ta có: \(\left(x-y\right)\left(\frac{1}{a^x}-\frac{1}{a^y}\right)\le0,\forall x,y\in R\Rightarrow\frac{x}{a^x}+\frac{y}{a^y}\le\frac{x}{a^y}+\frac{y}{a^x}\) (1)

Chứng minh tương tự \(\frac{y}{a^y}+\frac{z}{a^z}\le\frac{z}{a^y}+\frac{y}{a^z}\) (2) \(\frac{z}{a^z}+\frac{x}{a^x}\le\frac{x}{a^z}+\frac{z}{a^x}\) (3)

Cộng vế với vế (1), (2) và (3) ta được \(2\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{y+z}{a^x}+\frac{z+x}{a^y}+\frac{x+y}{a^z}\) (4)

Cộng 2 vế của (4) với biểu thức \(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\) ta được

\(3\left(\frac{x}{a^x}+\frac{y}{a^y}+\frac{z}{a^z}\right)\le\frac{x+y+z}{a^x}+\frac{x+y+z}{a^y}+\frac{x+y+z}{a^z}=\left(x+y+z\right)\left(\frac{1}{a^x}+\frac{1}{a^y}+\frac{1}{a^z}\right)\)