K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2023

Sửa đề: \(3x^2+3y^2+4xy+2x-2y+2=0\)

=>\(2x^2+4xy+2y^2+x^2+2x+1+y^2-2y+1=0\)

=>\(2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
=>\(\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

22 tháng 2 2020

\(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow\left(2x^2+2y^2+4xy\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow2\left(x^2+y^2+2xy\right)+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0\)\(\left(x+1\right)^2\ge0\)\(\left(y-1\right)^2\ge0\)\(\forall x,y\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)

Vậy \(x=-1\)và \(y=1\)

NV
22 tháng 2 2020

\(\Leftrightarrow9x^2+9y^2+12xy+6x-6y+6=0\)

\(\Leftrightarrow\left(9x^2+4y^2+1+12xy+6x+4y\right)+5\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow\left(3x+2y+1\right)^2+5\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+2y+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

29 tháng 6 2018

P = 3x2 - 2x + 3y2 - 2y + 6xy +2018

P = 3(x2 + y2 + 2xy) - 2(x + y) + 2018

P = 3[(x + y)2 - 2xy + 2xy] -2.5 + 2018

P = 3[ 52 +0] - 10 + 2018

P = 3.25 + 2008

P = 75 + 2008

P = 2083

11 tháng 8 2016

Bài 1:

a. A = x^2 - 5x - 1

\(=x^2-5x+\frac{25}{4}-\frac{29}{4}\)

\(=x^2-5x+\left(\frac{5}{2}\right)^2-\frac{29}{4}\)

\(=\left(x-\frac{5}{2}\right)^2-\frac{29}{4}\ge0-\frac{29}{4}=-\frac{29}{4}\)

Dấu = khi x=5/2

Vậy MinC=-29/4 khi x=5/2

 

 

11 tháng 8 2016

2. Tìm x:
a. ( 2x - 3 )^2 - ( 4x + 1 )( 4x - 1 ) = ( 2x - 1 ).( 3 - 7x )

=>4x2-12x+9+1-16x2=-14x2+13x-3

=>-12x2-12x+10=-14x2+13x-3

=>2x2-25x+13=0

\(\Rightarrow2\left(x-\frac{25}{4}\right)^2-\frac{521}{8}=0\)

\(\Rightarrow\left(x-\frac{25}{4}\right)^2=\frac{521}{16}\)

\(\Rightarrow x-\frac{25}{4}=\pm\sqrt{\frac{521}{16}}\)

\(\Rightarrow x=\frac{25}{4}\pm\frac{\sqrt{521}}{4}\)

c. 4.( x - 3 ) - ( x + 2 ) = 0

=>4x-12-x-2=0

=>3x-14=0

=>3x=14

=>x=14/3

 

 

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

30 tháng 9 2017

P = 3x2 - 2x + 3y2 - 2y + 6xy - 100

= (3x2 + 6xy + 3y2) - (2x + 2y) - 100

= 3(x2 + 2xy + y2) - 2(x + y) - 100

= 3(x + y)2 - 2.5 - 100

= 3. 52 -10 - 100

= 75 - 10 - 100 = -35

Q = x3 + y3 - 2x2 - 2y2 + 3xy(x + y) - 4xy + 3(x+y) +10

= x3 + y3 - 2x2 - 2y2 + 3x2y + 3xy2 - 4xy + 3.5 + 10

= (x3 + 3x2y + 3xy2 + y3) - (2x2 + 4xy + 2y2) + 15 + 10

= (x + y)3 - 2(x2 + 2xy + y2) + 25

= 53 - 2(x + y)2 +25

= 125 - 2. 52 + 25

= 125 - 50 + 25 = 100

29 tháng 11 2018

\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)

\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)

Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A

\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)

24 tháng 8 2020

a) Ta có :  x - 2y = 0

=> x = 2y

Khi đó A = 2.(2y)2 - 2y2 - 3.2yy - 2.2y.y2 + (2y)2.y + 5

= 8y2 - 2y2 - 6y2 - 4y3 + 4y+ 5

= 5

Vậy giá trị của A khi x - 2y = 0 là 5

b)Thay 11 = x - y vào biểu thức B ta có

\(B=\frac{3x-\left(x-y\right)}{2x+y}-\frac{3y+x-y}{2y+x}=\frac{2x+y}{2x+y}-\frac{2y+x}{2y+x}=1-1=0\)

Vậy giá trị của B khi x - y = 11 là 0