K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2021

a, sửa đề : \(25x^2+4y^2-10x+12y+10=0\)

\(\Leftrightarrow25x^2-10x+1+4y^2+12y+9=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)

Đẳng thức xảy ra khi x = 1/5 ; y = -3/2 

b, \(3x^2+2y^2-12x+12y+30=0\)

\(\Leftrightarrow3\left(x^2-4x+4\right)+2\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)

Đẳng thức xảy ra khi x = 2 ; y = -3 

\(a)\)

\(25x^2+4y^2-10x+12x+10=0\)

\(\Leftrightarrow\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)

\(\Leftrightarrow[\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)

\(\Leftrightarrow[\left(5x\right)^2-2.5x.1-1^2]+[\left(2y\right)^2+2.2y.3+3^{20}]=0\)

\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)

\(\Leftrightarrow\left(5x-1\right)^2=0\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)

\(\Leftrightarrow\left(2y+3\right)^2=0\Leftrightarrow2y+3=0\Leftrightarrow2y=-3\Leftrightarrow y=\frac{-3}{2}\)

\(b)\)

\(3x^2+2y^2-12x+12y+30=0\)

\(\Leftrightarrow3x^2-12x+12+2y^2+12y+18=0\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)

Mà: \(3\left(x-2\right)^2\ge0\forall x;2\left(y+3\right)^2\ge0\forall y\)

\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)chỉ khi: \(x-2=y+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-3\end{cases}}\)

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

1 tháng 8 2020

a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)

\(=xy\left(2xy-\frac{4}{3}x+2\right)\)

b) 2xy2.(x + 5y) - 4xy(5y + x)

= (5y + x)(2xy2 - 4xy)

= 2xy(5y + x)(y - 2)

c) 25 - 4x2 - y2 + 4xy

= 25 - (4x2 - 4xy + y2)

= 52 - (2x + y)2

= (5 - 2x - y)(5 + 2x + y)

d) x2 + 4x - 2xy - 4y +y2

= (x2 - 2xy + y2) + (4x - 4y)

= (x - y)2 + 4(x - y)

= (x - y)(x - y + 4)

e) 12y3 - 3x2y + 12xy - 12y

= 3y(4y2 - x2 + 4x - 4)

= 3y[4y2 - (x - 2)2]

= 3y(2y - x + 2)(2y + x - 2)

f) 64x4 + y4

= (8x2)2 + 16x2y2 + y4 - 16x2y2

= (8x2 + y2)2 - (4xy)2

= (8x2 + y2 - 4xy)(8x2 + y2 + 4xy)

1 tháng 8 2020

a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)

b) \(2xy^2\left(x+5y\right)-4xy\left(5y+x\right)\)

\(=\left(x+5y\right)\left(2xy^2-4xy\right)\)

\(=2\left(x+5y\right)\left(xy^2-2xy\right)\)

c) \(25-4x^2-y^2+4xy\)

\(=25-\left(4x^2+y^2-4xy\right)\)

\(=5^2-\left[\left(2x\right)^2-2.2x.y+y^2\right]\)

\(=5^2-\left(2x-y\right)^2\)

\(=\left(5-2x+y\right)\left(5+2x-y\right)\)

d) \(x^2+4x-2xy-4y+y^2\)

\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)^2+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y\right)+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y+4\right)\)

e) \(12y^3-3x^2y+12xy-12y\)

f) \(64x^4+y^4\)

\(=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)

\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)

\(=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)

29 tháng 6 2019

D ez nhất :v

\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)

Đẳng thức xảy ra khi x = 1 và y = -2

29 tháng 6 2019

\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)

\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)

Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1

14 tháng 7 2019

\(4x^2+4xy+2y^2-4x-4y+2=0\)

\(\Rightarrow4x^2+4xy+y^2-4x-2y+1+y^2-2y+1=0\)

\(\Rightarrow\left(2x+1\right)^2-2\left(2x+1\right)+1+\left(y-1\right)^2=0\)

\(\Rightarrow\left(2x+1-1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow4x^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}4x^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)

19 tháng 8 2016

1.x² + y² - 4x - 2y + 5 = 0 ⇔ x² + y² - 4x - 2y + 4 + 1 = 0 

⇔ (x² - 4x + 4) + (y² - 2y + 1) = 0 ⇔ (x - 2)² + (y - 1)² = 0 

Do (x - 2)² ≥ 0 và (y - 1)² ≥ 0 nên (x - 2)² + (y - 1)² ≥ 0. Dấu '=' xảy ra ⇔ 

(x - 2)² = 0 và (y - 1)² = 0 ⇔ x - 2 = 0 và y - 1 = 0 ⇔ x = 2 và y = 1 

2. có x^2 + 4xy + 4y^2 -2(x+2y) + 10

= (x+2y)^2 - 2(x+2y) +10

= 5^2 - 2x5 +10

= 25

27 tháng 6 2017

\(1,4x^2+25y^2-12x-20y+13=0\)

\(\Leftrightarrow\left(4x^2-12x+9\right)+\left(25y^2-20y+4\right)=0\)

\(\Leftrightarrow\left(2x-3\right)^2+\left(5y-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\5y-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=3\\5y=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{2}{5}\end{matrix}\right.\)

27 tháng 6 2017

1, \(4x^2+25y^2-12x-20y+13=0\)

\(\Leftrightarrow\left(4x^2-12x+9\right)+\left(25y^2-20y+4\right)=0\)

\(\Leftrightarrow\left(2x-3\right)^2+\left(5y-2\right)^2=0\)

\(\left\{{}\begin{matrix}\left(2x-3\right)^2\ge0\\\left(5y-2\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(2x-3\right)^2+\left(5y-2\right)^2\ge0\)

\(\left(2x-3\right)^2+\left(5y-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)^2=0\\\left(5y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{2}{5}\end{matrix}\right.\)

Vậy...

b, \(13x^2+y^2+4xy-34x-2y+26=0\)

\(\Leftrightarrow\left(4x^2+y^2+1+4xy-4x-2y\right)+9x^2-30x+25=0\)

\(\Leftrightarrow\left(2x+y-1\right)^2+\left(3x-5\right)^2=0\)

Vì mỗi nhóm \(\ge0\) mà tổng 2 nhóm trên = 0

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+y-1\right)^2=0\\\left(3y-5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-7}{3}\\x=\dfrac{5}{3}\end{matrix}\right.\)

Vậy...

29 tháng 7 2019

a,\(2x^2-8x+y^2+2y+9=0\)

\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\) 

Mà \(2\left(x-2\right)^2\ge0\forall x\)\(\left(y+1\right)^2\ge0\forall y\) 

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy x=2;y=-1