Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x+1=x
=>0x=-1(L)
*)y=-1
=>x-1=-x
=>2x=1
=>x=1/2
Vậy y=-1 x=1/2
c)xy=x:y=>y2=1
=>y=1 hoặc y=-1
*)y=1
=>x-1=x
=>0x=1(L)
*)y=-1
=>x+1=-x
=>2x=-1
=>x=-1/2
Vậy y=-1 x=-1/2
d)x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
=>(x+y+z)2=9
=>x+y+z=3 hoặc x+y+z=-3
*)x+y+z=3
=>x=-5:3=-5/3
y=9:3=3
z=5:3=5/3
*)x+y+z=-3
=>x=-5:(-3)=5/3
y=9:(-3)=-3
z=5:(-3)=-5/3
a) Ta có: \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|\ge0\)
Mà \(\left|1-2x\right|+\left|2-3y\right|+\left|3-4z\right|=0\)
\(\Rightarrow\left[{}\begin{matrix}\left|1-2x\right|=0\\\left|2-3y\right|=0\\\left|3-4z\right|=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1-2x=0\\2-3y=0\\3-4z=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\3y=2\\4z=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{3}\\z=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{2};y=\dfrac{2}{3};z=\dfrac{3}{4}\)
Từ \(xy=x:y\)=> \(xy=\frac{x}{y}\)=> \(xy^2=x\)
=> \(y^2=1\) => \(y=\pm1\)
Thay \(y=1\) vào \(x-y=x.y\) ta có : \(x-1=x.1\)
=> \(x-1=x\)=> \(0x=1\)( vô lý) => loại
Thay \(y=-1\) vào \(x-y=x.y\)ta có: \(x-\left(-1\right)=x.\left(-1\right)\)
=> \(x+1=-x\)=> \(2x=-1\)
=> \(x=\frac{-1}{2}\)
\(v\text{ậy}\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)
hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)
d: =>x+1;x-2 khác dấu
Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)
Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)
e: =>x-2>0 hoặc x+2/3<0
=>x>2 hoặc x<-2/3
Có \(x:y=5:\left(-3\right)\Rightarrow\frac{x}{y}=\frac{5}{-3}\Rightarrow\frac{x}{5}=\frac{y}{-3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{-3}=\frac{x-y}{5-\left(-3\right)}=\frac{-16}{8}=-2\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{5}=-2\Rightarrow x=\left(-2\right)\cdot5=-10\\\frac{y}{-3}=-2\Rightarrow y=\left(-2\right)\left(-3\right)=6\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(-10;6\right)\)
Ta có: \(x+y=3\left(x-y\right)\Rightarrow x+y=3x-3y\Leftrightarrow x-3x=-3y-y\Leftrightarrow-2x=-4y\Leftrightarrow x=2y\)
Thay x=2y vào x/y ta được: \(\frac{x}{y}=\frac{2y}{y}=2\)
Mà \(x+y=\frac{x}{y}=3\left(x-y\right)\)
\(\Rightarrow\hept{\begin{cases}x+y=2\\3\left(x-y\right)=2\end{cases}\Rightarrow\hept{\begin{cases}x+y=2\\x-y=\frac{2}{3}\end{cases}}}\)
=> \(x+y+x-y=2+\frac{2}{3}\Rightarrow2x=\frac{8}{3}\Rightarrow x=\frac{4}{3}\)
\(\Rightarrow y=2-\frac{4}{3}=\frac{2}{3}\)
Vậy x = 4/3, y = 2/3