Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
x(x-y) = \(\dfrac{3}{10}\)
=> \(x^2-xy=\dfrac{3}{10}\) (1)
y(x-y) = \(-\dfrac{3}{50}\)
=> \(xy-y^2=-\dfrac{3}{50}\) (2)
Trừ (1) cho (2), ta có :
\(x^2-xy-xy+y^2=\dfrac{3}{10}+\dfrac{3}{50}\)
\(\Rightarrow x^2-2xy+y^2=\dfrac{18}{50}=\dfrac{9}{25}\)
=> \(\left(x-y\right)^2=\dfrac{9}{25}\)
\(\Rightarrow\left[{}\begin{matrix}x-y=\dfrac{3}{5}\\x-y=-\dfrac{3}{5}\end{matrix}\right.\)
TH1
x- y = \(\dfrac{3}{5}\)
Ta có
\(\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{5}x=\dfrac{3}{10}\\\dfrac{3}{5}y=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{1}{10}\end{matrix}\right.\)
TH2:
x-y=\(-\dfrac{3}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x-y\right)=\dfrac{3}{10}\\y\left(x-y\right)=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{3}{5}x=\dfrac{3}{10}\\-\dfrac{3}{5}y=-\dfrac{3}{50}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{5}\end{matrix}\right.\)
Vậy các cặp (x,y) thỏa mãn là (x;y) \(\in\left\{\left(\dfrac{1}{2};-\dfrac{1}{5}\right);\left(-\dfrac{1}{2};\dfrac{1}{5}\right)\right\}\)
2) \(\left(x-3\right)\left(x+\dfrac{1}{2}\right)>0\)
TH1:
\(\left\{{}\begin{matrix}x-3>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>3\\x>-\dfrac{1}{2}\end{matrix}\right.\)
=> x >3
TH2:
\(\left\{{}\begin{matrix}x-3< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x< -\dfrac{1}{2}\end{matrix}\right.\)
=> x <\(-\dfrac{1}{2}\)
Vậy giá trị x thỏa mãn là x < -1/2 hoặc x>3
1)
Từ gt,ta có : x(x - y) - y(x - y) =\(\frac{3}{10}-\frac{-3}{50}\)
(x - y)2 =\(\frac{9}{25}\)\(\Rightarrow\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=\frac{-3}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{10}:\frac{3}{5}=\frac{1}{2}\\x=\frac{3}{10}:\frac{-3}{5}=\frac{-1}{2}\end{cases};\orbr{\begin{cases}y=\frac{-3}{50}:\frac{3}{5}=\frac{-1}{10}\\y=\frac{-3}{50}:\frac{-3}{5}=\frac{1}{10}\end{cases}}}}\)
Vậy\(x=\frac{1}{2};y=\frac{-1}{10}\) hoặc\(x=\frac{-1}{2};y=\frac{1}{10}\)
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
bài 2:
Gọi phân số cần tìm là \(\frac{7}{x}\)(x≠0)
Ta có: \(-\frac{9}{10}< \frac{7}{x}< -\frac{9}{11}\)
\(\Leftrightarrow\frac{63}{-70}< \frac{63}{9x}< \frac{63}{-77}\)
\(\Leftrightarrow-77< 9x< -70\)
Vì 9x là bội của 9 và trong dãy số nguyên từ -77 tới -70 chỉ có số -72 là bội của 9 nên 9x=-72
hay x=-8
Vậy: phân số cần tìm là \(\frac{7}{-8}\)
Bài 3:
A=|x+1|+5
Ta có: \(\left|x+1\right|\ge0\forall x\)
\(\Rightarrow\left|x+1\right|+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy: Giá trị nhỏ nhất của đa thức A=|x+1|+5 là 5 khi x=-1
b) Ta có: \(B=\frac{x^2+15}{x^2+3}\)
\(=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Ta có: \(x^2\ge0\forall x\)
\(\Leftrightarrow x^2+3\ge3\forall x\)
\(\Rightarrow\frac{1}{x^2+3}\le\frac{1}{3}\forall x\)
\(\Rightarrow\frac{12}{x+3}\le4\forall x\)
\(\Rightarrow1+\frac{12}{x+3}\le5\forall x\)
Dấu '=' xảy ra khi
\(\frac{12}{x+3}=4\Leftrightarrow x+3=\frac{12}{4}=3\)\(\Leftrightarrow x=3-3=0\)
Vậy: giá trị lớn nhất của biểu thức \(B=\frac{x^2+15}{x^2+3}\) là 5 khi x=0
bài 1:
|x| = \(\dfrac{1}{3}\) => x = \(\pm\)\(\dfrac{1}{3}\) |y| = 1 => y = \(\pm\)1
a
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\) +5 = 2.\(\dfrac{1}{9}\) - 1 + 5
= \(\dfrac{2}{9}\) - 1 + 5 = \(\dfrac{2-9+45}{9}\) = \(\dfrac{38}{9}\)
+) A = 2x\(^2\) - 3x + 5
= 2\(\left(\dfrac{-1}{3}\right)^2\) - 3\(\left(\dfrac{-1}{3}\right)\) + 5
= 2.\(\dfrac{1}{9}\) - (-1) + 5 = \(\dfrac{2}{9}\) + 1 +5
= \(\dfrac{2+9+45}{9}\) = \(\dfrac{56}{9}\)
b) +) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{1}{3}\right)^2\) - 3.\(\dfrac{1}{3}\).1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - 1 + 1 = \(\dfrac{2}{9}\) - 1 + 1
= \(\dfrac{2-9+9}{9}\) = \(\dfrac{2}{9}\)
+) B = 2x\(^2\) - 3xy + y\(^2\)
= 2\(\left(\dfrac{-1}{3}\right)\)\(^2\) - 3\(\left(\dfrac{-1}{3}\right)\). 1 + 1\(^2\)
= 2.\(\dfrac{1}{9}\) - (-1) + 1 = \(\dfrac{2}{9}\) + 1 + 1
= \(\dfrac{2+9+9}{9}\) = \(\dfrac{20}{9}\)
bài 3
x.y.z = 2 và x + y + z = 0
A = ( x + y )( y +z )( z + x )
= x + y . y + z . z + x = ( x + y + z ) + ( x . y . z )
= 0 + 2 = 2
bài 4
a) | 2x - \(\dfrac{1}{3}\) | - \(\dfrac{1}{3}\) = 0 => | 2x - \(\dfrac{1}{3}\) | = \(\dfrac{1}{3}\)
=> 2x - \(\dfrac{1}{3}\) = \(\pm\) \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\)= \(\dfrac{1}{3}\)
=> 2x = \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) = \(\dfrac{2}{3}\)
x = \(\dfrac{2}{3}\) : 2 = \(\dfrac{2}{3}\) . \(\dfrac{1}{2}\) = \(\dfrac{1}{3}\)
+) 2x - \(\dfrac{1}{3}\) = \(\dfrac{-1}{3}\)
2x = \(\dfrac{-1}{3}\) + \(\dfrac{1}{3}\) = 0
x = 0 : 2 = 2
\(x^2+\left(y-\dfrac{1}{10}\right)^{2018}=0\\ \Leftrightarrow x^2+\left[\left(y-\dfrac{1}{10}\right)^{1009}\right]^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=0\\\left(y-\dfrac{1}{10}\right)^{1009}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
\(A=\dfrac{x^3-3x^2+0,25xy^2-4}{x^2+y} \)
Tính A biết \(x=\dfrac{1}{2}\); y là số nguyên âm lớn nhất
Vì ý là số nguyên âm lớn nhất
=> y = -1
Thay \(x=\frac{1}{2};y=-1\) vào A là ta có:
\(A=\frac{\left(\frac{1}{2}\right)^3-3.\left(\frac{1}{2}\right)^2+0,25.\frac{1}{2}.\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)
\(=\) \(\frac{\frac{1}{8}-3.\frac{1}{4}+0,25.\frac{1}{2}.1-4}{\frac{1}{4}+\left(-1\right)}\)
\(=\frac{\frac{1}{8}-\frac{3}{4}+\frac{1}{8}-4}{\frac{5}{4}}\)
\(=\frac{\frac{-9}{2}}{\frac{5}{4}}=\frac{-9}{2}.\frac{4}{5}=\frac{-36}{10}=\frac{-18}{5}=-3,6\)
Vậy \(A=-3,6\)
a)
\(\left|\dfrac{1}{2}-\dfrac{1}{3}+x\right|=-\dfrac{1}{4}-y\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}-\dfrac{1}{3}+x=-\dfrac{1}{4}-y\\\dfrac{1}{2}-\dfrac{1}{3}+x=\dfrac{1}{4}+y\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y=-\dfrac{5}{12}\\x-y=\dfrac{1}{12}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{6}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|=0\)
ta thấy : \(\left|x-y\right|\ge0\\ \left|y+\dfrac{9}{25}\right|\ge0\)\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)
đẳng thửc xảy ra khi : \(\left\{{}\begin{matrix}x-y=0\\y+\dfrac{9}{25}=0\end{matrix}\right.\Rightarrow x=y=-\dfrac{9}{25}\)
vậy \(\left(x;y\right)=\left(-\dfrac{9}{25};-\dfrac{9}{25}\right)\)
c) \(\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}=0\)
ta thấy \(\left(\dfrac{1}{2}x-5\right)^{20}\:và\:\left(y^2-\dfrac{1}{4}\right)^{10}\) là các lũy thừa có số mũ chẵn
\(\Rightarrow\:\)\(\left(\dfrac{1}{2}x-5\right)^{20}\ge0\\ \left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)\(\Rightarrow\left(\dfrac{1}{2}x-5\right)^{20}+\left(y^2-\dfrac{1}{4}\right)^{10}\ge0\)
đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\dfrac{1}{2}x-5=0\\y^2-\dfrac{1}{4}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=10\\\left[{}\begin{matrix}y=-\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy cặp số x,y cần tìm là \(\left(10;\dfrac{1}{2}\right)\:hoặc\:\left(10;-\dfrac{1}{2}\right)\)
d)
\(\left|x\left(x^2-\dfrac{5}{4}\right)\right|=x\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=x\left(vì\:x\ge0\right)\\ \Leftrightarrow x\left(x^2-\dfrac{9}{4}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{9}{4}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
vậy x cần tìm là \(-\dfrac{3}{2};0;\dfrac{3}{2}\)
e)\(x^2+\left(y-\dfrac{1}{10}\right)^4=0\)
ta thấy: \(x^2\ge0;\left(y-\dfrac{1}{10}\right)^4\ge0\)
\(\Rightarrow x^2+\left(y-\dfrac{1}{10}\right)^4\ge0\)
đẳng thức xảy ra khi: \(\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{10}\end{matrix}\right.\)
vậy cặp số cần tìm là \(0;\dfrac{1}{10}\)