Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> x2=4.9=36 => x=\(\pm6\)
y2=4.16=64 => y\(\pm8\)
Vì \(\frac{x^2}{9}=\frac{y^2}{16}\) nên x và y cùng dấu
Vậy (x;y) thõ mãn là (6;8);(-6;-8)
b)
Theo bài ra ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\) =>\(\frac{x}{10}=\frac{y}{15}\) (1)
2y=5z => \(\frac{y}{5}=\frac{z}{2}\Rightarrow\frac{y}{15}=\frac{z}{6}\) (2)
Từ (1) và (2) => \(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{6}=\frac{x+y+z}{10+15+6}=\frac{-62}{31}=-2\)
=> x=(-2).10=-20
y=(-2).15=-30
z=(-2).6=-12
Vậy x=-20; y=-30; z=-12
a.
\(\frac{x}{19}=\frac{y}{21}\Rightarrow\frac{2x}{38}=\frac{y}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{14}{17}\)
\(\frac{2x}{38}=\frac{14}{17}\Rightarrow x=\frac{266}{17}\)
\(\frac{y}{21}=\frac{14}{17}\Rightarrow y=\frac{294}{17}\)
b.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\frac{x^2}{9}=4\Rightarrow x=\pm6\)
\(\frac{y^2}{16}=4\Rightarrow y=\pm8\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow\begin{cases}x^2=36\\y^2=64\end{cases}\)
\(\Rightarrow\begin{cases}x=\pm6\\y=\pm8\end{cases}\)
Mà 9 và 16 cùng dấu
=> x ; y cùng dấu
\(\Rightarrow\left(x;y\right)\in\left\{\left(6;8\right);\left(-6;-8\right)\right\}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
+) \(\frac{x^2}{9}=4\Rightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Rightarrow y=\pm8\)
Vậy \(x=\pm6;y=\pm8\)
a. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
Suy ra :
+) \(\frac{x}{7}=2\Leftrightarrow x=14\)
+) \(\frac{y}{13}=2\Leftrightarrow y=26\)
Vậy x = 14 ; y = 26
b. \(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
Suy ra :
+) \(\frac{x}{17}=-3\Leftrightarrow x=-51\)
+) \(\frac{y}{3}=-3\Leftrightarrow y=-9\)
Vậy x = - 51 ; y = - 9
c. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{19}=\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
Suy ra :
+) \(\frac{x}{19}=2\Leftrightarrow x=38\)
+) \(\frac{y}{21}=2\Leftrightarrow y=42\)
Vậy x = 38 ; y = 42
d. Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Suy ra :
+) \(\frac{x^2}{9}=4\Leftrightarrow x^2=36=6^2\Leftrightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Leftrightarrow y^2=64=8^2\Leftrightarrow y=\pm8\)
Vậy x =\(\pm\)6 ; y =\(\pm\)8
a,AD t/c DTS bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{40}{20}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=2\Rightarrow x=14\\\frac{y}{13}=2\Rightarrow y=26\end{cases}}\)
b,\(\frac{x}{y}=\frac{17}{3}\Leftrightarrow\frac{x}{17}=\frac{y}{3}\)
AD t/c DTS bằng nhua ta có:
\(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=-\frac{60}{20}=-3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{17}=-3\Rightarrow x=-51\\\frac{y}{3}=-3\Rightarrow y=-9\end{cases}}\)
c,\(\frac{x}{19}=\frac{y}{21}\Leftrightarrow\frac{2x}{38}=\frac{y}{21}\)
AD t/c DTS bằng nhau ta có:
\(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{19}=2\Rightarrow x=38\\\frac{y}{21}=2\Rightarrow x=42\end{cases}}\)
d,Đặt \(\frac{x^2}{9}=\frac{y^2}{16}=k\)
\(\Rightarrow x^2=9k;y^2=16k\)
\(\Rightarrow x^2+y^2=9k+16k=25k=100\)
\(\Rightarrow k=4\)
\(\Rightarrow\frac{x^2}{9}=4\Leftrightarrow x^2=36;\frac{y^2}{16}=4\Leftrightarrow y^2=64\)
\(\Rightarrow\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Tìm x, y biết : $\frac{x^2}{9}=\frac{y^2}{16}$x29 =y216 và x2 + y2 = 100
Ta có: \(\frac{x^2}{9}=\frac{y^2}{16}\) và x2+y2= 100
Áp dụng t/c của dãy tỉ số = nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Khi đó: \(\frac{x^2}{9}=4\Rightarrow x=+-6\)
\(\frac{y^2}{16}=4\Rightarrow y=+-8\)
Vậy _________________
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Suy ra
\(\frac{x^2}{9}=4\Rightarrow x^2=4\cdot9=36\)\(\Rightarrow\) x = 6 hoặc x = -6
\(\frac{y^2}{16}=4\Rightarrow y^2=4\cdot16=64\)\(\Rightarrow\) x = 8 hoặc x = - 8
Ta có : x2/9 = y2/16
Áp dụng T/c dãy tỉ số bằng nhau
x2/9 = y2/16 = x2 + y2 / 9 + 16 = 100/25 = 4
x2/9 = 4 => x2 = 36 => x = 6 hoặc -6
y2 /16 = 4 => y2 = 64 => y = 8 hoặc -8
Ta có \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> x2 = 9.4 = 36
=> x = \(\pm6\)
y2 = 4.16 = 64
=> y = \(\pm8\)
Vậy các cặp (x;y) thỏa mãn là (6 ; 8) ; (-6;-8) ; (-6 ; 8) ; (6 ; - 8)
b) Ta có \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)
=> x = 9 ; y = 9.2 = 18 ; z = 3.9 = 27
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\frac{x^2}{9}=4\Rightarrow x=\sqrt{9\cdot4}=6\)
\(\frac{y^2}{16}=4\Rightarrow y=\sqrt{4\cdot16}=8\)
\(\hept{\begin{cases}\frac{x^2}{9}=\frac{y^2}{16}\\x^2+y^2=100\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\hept{\begin{cases}\frac{x^2}{9}=4\Rightarrow x^2=36\Rightarrow x=\pm4\\\frac{y^2}{16}=4\Rightarrow y^2=64\Rightarrow y=\pm8\end{cases}}\)
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=>x2=4.9=36 =>x=-6;6
y2=64=>y=-8;8
vậy (x;y)=(-6;-8);(6;8)