Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x + 2)2 - (x - 1)(x + 1) = 13
=> (x2 + 2.x.2 + 22 )- (x2 - 1) = 13 ( dùng hẳng đẳng thức số 1 và số 3)
=> x2 + 4x + 4 - x2 + 1 = 13
=> (x2 - x2) + 4x + 4 + 1 = 13
=> 4x + 4 + 1 = 13
=> 4x + 5 = 13
=> 4x = 8
=> x = 2
Vậy x = 2
(x + 1)3 + x(x - 1) = x3 + 4x2
=> x3 + 3.x2.1 + 3.x.12 + 13 + x2 - x - x3 - 4x2 = 0
=> x3 + 3x2 + 3x + 1 + x2 - x - x3 - 4x2 = 0
=> (x3 - x3) + (3x2 + x2 - 4x2) + (3x - x) + 1 = 0
=> 2x + 1 = 0 => 2x = -1 => x = -1/2
(x + 1)(x + 2) - (x + 3)2 = 24
=> x(x + 2) + 1(x + 2) - (x2 + 2.x.3 + 32) = 24
=> x2 + 2x + x + 2 - (x2 + 6x + 9) = 24
=> x2 + 2x + x + 2 - x2 - 6x - 9 = 24
=> (x2 - x2) + (2x + x - 6x) + (2 - 9) = 24
=> -3x - 7 = 24
=> -3x = 31
=> x = -31/3
(x - 1)(x2 + x + 1) + 2x = x3 + 5
Dựa vào hằng đẳng thức : (A - B)(A2 + AB + B2) = A3 - B3
=> (x - 1)(x2 + x.1 + 12) = x3 - 13 = x3 - 1
=> x3 - 1 + 2x - x3 - 5 = 0
=> (x3 - x3) - 1 + 2x - 5 = 0
=> -1 + 2x - 5 = 0
=> -1 + 2x = 5
=> 2x = 6
=> x = 3
\(\left(x+2\right)^2-\left(x-1\right)\left(x+1\right)=13\)
\(\left(x^2+4x+4\right)-\left(x^2-1\right)=13\)
\(x^2+4x+4-x^2+1=13\)
\(4x+5=13\)
\(4x=8\)
\(x=2\)
b,\(\left(x+1\right)^3+x\left(x-1\right)=x^3+4x^2\)
\(x^3+3x^2+3x+1+x^2-x-x^3-4x^2=0\)
\(2x+1=0\)
\(2x=-1\)
\(x=-\frac{1}{2}\)
3(x + 1)2 - 3x(x + 2) = 1
<=> 3x2 + 6x + 3 - 3x2 - 6x = 1
<=> 3 = 1 (vô lí)
Vậy phương trình vô nghiệm.
(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2
<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 = 2
<=> 3x - 40 = 2
<=> 3x = 42
<=> x = 14
Vậy S = { 14 }.
(x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
<=> x3 + 8 - x3 - 2x = 15
<=> - 2x + 8 = 15
<=> - 2x = 7
<=> x = - 7/2
Vậy S = { - 7/2 }.
cho C= [x(1-x2)2]/(1+x2) : { [ (1-x3)/(1-x) +x ] [ (1+x3)/(1+x) - x ] }
a. Rút gọn C
b. Tìm x để 3C=1
a) Ta có : 3(x - 2)2 + (x - 1)3 = x3 + 29
=> 3(x2 - 4x + 4) + x3 - 3x2 + 3x - 1 = x3 + 29
=> 3x2 - 12x + 12 + x3 - 3x2 + 3x - 1 - x3 - 29 = 0
=> -9x - 18 = 0
=> -9x = 18
=> x = -2
Vậy x = -2
\(\left(x^2+3\right)\left(x+1\right)+x=-1\)
\(\left(x^2+3\right)\left(x+1\right)+x+1=0\)
\(\left(x^2+3+1\right)\left(x+1\right)=0\)
\(\left(x^2+4\right)\left(x+1\right)=0\)
Vì \(x^2+4>0\) =>
x+1 =0
x=-1
\(\left(x^2+3\right)\left(x+1\right)+x=-1\)
\(\Leftrightarrow\left(x^2+3\right)\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+3+1\right)=0\)
\(\Leftrightarrow x+1=0\left(x^2+4>0\forall x\in R\right)\)
\(\Leftrightarrow x=-1\)