Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có:\(xy+x=3\)
\(\Leftrightarrow x\left(y+1\right)=3\)
Vì x,y thuộc Z \(\hept{\begin{cases}x\\y+1\end{cases}}\in Z\)
\(\Rightarrow x;y+1\inƯ\left(3\right)\)
\(\Rightarrow x;y+1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\y+1=3\Rightarrow y=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\y+1=-3\Rightarrow y=-4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\y+1=1\Rightarrow y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\y+1=-1\Rightarrow y=-2\end{cases}}\)
a) x+xy+y=9
=> x(1+y) +y+1=10
=> (x+1)(y+1)=10
Nếu \(x\ge y\)thì \(x+1\ge y+1\)
Từ đó,ta có bảng
x+1 | 10 | 5 | -1 | -2 |
y+1 | 1 | 2 | -10 | -5 |
x | 9 | 4 | -2 | -3 |
y | 0 | 1 | -11 | -6 |
Vậy ( x;y) lần lượt là : (9;0),(0;9),(4;1),(1;4),(-2;-11),(-11;-2),(-3;-6),(-6;-3)
a)\(x+xy+y=9\)
\(\Rightarrow x\left(1+y\right)+y+1=10\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=10\)
Nếu \(x\ge y\)thì \(x+1\ge y+1\)
Từ đó, ta có bảng như sau:
x+1 | 10 | 5 | -1 | -2 |
y+1 | 1 | 2 | -10 | -5 |
x | 9 | 4 | -2 | -3 |
y | 0 | 1 | -11 | -6 |
Vậy x; y lần lượt là: (9; 0); (0; 9); (4; 1); (1; 4); (-2; -11); (-11; -2); (-3; -6); (-6; -3).
a) x + xy + y = 9
x(y + 1) + y = 9
x(y + 1) + y + 1 = 9 + 1
x(y + 1) + (y + 1) = 9 + 1
(x + 1)(y + 1) = 10 = 2.5 = 1.10 = (-2)(-5) = (-1)(-10)
Liệt kê ra
a,x+xy+y=9
<=>x+xy+y+1=10
<=>x﴾y+1﴿+﴾y+1﴿=10
<=>﴾x+1﴿﴾y+1﴿=10 =1.10=-1.(-10)=2.5=(-2).(-5)
=> +,
+,
+,
....
Từ đó ta tìm được các cặp ﴾x;y﴿thoã mãn:
﴾1;4﴿ ; ﴾0;9﴿ ; ﴾‐3;‐6﴿ ; ﴾‐2;‐11﴿ ; ﴾4;1﴿ ; ﴾9;0﴿ ; ﴾‐6;‐3﴿ ; ﴾‐11;‐2﴿
Bài 1: Ta có 5x+7=5(x-2)+8
Để 5x+7 chia hết cho x-2 thì 5(x-2) +8 chia hết cho x-2
=> 8 chia hết cho x-2
x nguyên => x-2 nguyên => x-2 thuộc Ư (8)={-8;-4;-2;-1;1;2;4;8}
ta có bảng
x-2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
x | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
Bài 2:
a) xy+x=-15
<=> x(y+1)=-15
=> x, y+1 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y+1 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | 0 | 2 | 4 | 14 | -16 | -6 | -4 | -2 |
b) xy+2-y=9
<=> y(x-1)=7
=> y, x-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng
y | -7 | -1 | 1 | 7 |
x-1 | -1 | -7 | 7 | 1 |
x | 0 | -6 | 6 | 2 |
c) xy+2x+2y=-17
<=> x(y+2)+2(y+2)=-15
<=> (x+2)(y+2)=-15
<=> x+2; y+2 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x+2 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
x | -17 | -7 | -5 | -3 | -1 | 1 | 3 | 13 |
y+2 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | -1 | 1 | 3 | 13 | -17 | -7 | -5 | -3 |
a, x = 0 ; y = 0
hoặc x = 2 ; y = 2
b,x = 0 , y = 0
a) \(x+y=xy\)\(\Leftrightarrow xy-x-y=0\)\(\Leftrightarrow x\left(y-1\right)-y+1=1\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=1\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=1\)
Lập bảng giá trị ta có:
\(2\)
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(0;0\right)\)hoặc \(\left(2;2\right)\)
b) \(xy-x-y=2\)\(\Leftrightarrow x\left(y-1\right)-y+1=3\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)=3\)\(\Leftrightarrow\left(x-1\right)\left(y-1\right)=3\)
Lập bảng giá trị ta có:
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là \(\left(0;-2\right)\), \(\left(-2;0\right)\), \(\left(2;4\right)\), \(\left(4;2\right)\)