K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)

Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)

\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)

=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)

\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)

\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)

\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)

Vậy GTNN của P = 2.

18 tháng 8 2020

Sửa: \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4\); x+y=1

Ta có \(P=2x^4+x^3\left(2y-1\right)+y^3\left(2x-1\right)+2y^4=2x^4+2x^3y-x^3+2xy^3-y^3+2y^4\)

\(=x^3\left(2x+2y\right)+y^3\left(2x+2y\right)-\left(x^3+y^3\right)=\left(2x+2y\right)\left(x^3+y^3\right)-\left(x^3+y^3\right)\)

\(=\left(2x+2y-1\right)\left(x^3+y^3\right)=x^3+y^3\)

Do \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=x^2-xy+y^2=\frac{1}{2}\left(x^2+y^2\right)\left(\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}\right)^2\)

\(\Rightarrow P\ge\frac{1}{2}\left(x^2+y^2\right)\)

Mà \(x+y=1\Rightarrow x^2+y^2+2xy=1\Rightarrow2\left(x^2+y^2\right)-\left(x-y\right)^2=1\)

\(\Rightarrow2\left(x^2+y^2\right)\ge1\Rightarrow\left(x^2+y^2\right)\ge\frac{1}{2}\Rightarrow P\ge\frac{1}{4}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

17 tháng 7 2017

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2