K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

 Câu trả lời hay nhất:  trừu tượng. nếu không nguyên 
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định 
đặt x+y=a=> y=a-x 
thay vào pt điều kiện 

2(x^2+1)+x^2=2(a-x)(x+1) 
3x^2+2 =2ax+2a-2x^2-2x 
5x^2+2x-2ax+2-2a=0 
5x^2+2(1-a)x+2(1-a)=0 
(1-a)^2-10(1-a)>=0 
(1-a)(1-a-10)>=0 
(a-1)(a+9)>=0 
a<=-9 
hoặc 
a>=1 

(x+y)<-9 hoặc (x+y)>=1

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

27 tháng 9 2016

Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?

27 tháng 9 2016

hỏi nhanh thế?

26 tháng 7 2019

Có:

\(2x^2+1=y^2-yx^2\)

<=> \(x^2\left(y+2\right)=\left(y-1\right)\left(y+1\right)\)

=> \(x^2\left(y+2\right)⋮\left(y+1\right)\)mà y+1 và y+2 là hai số nguyên liên tiếp nên nguyên tố cùng nhau

=> \(x^2⋮\left(y+1\right)\)

Đặt: \(x^2=\left(y+1\right)t\)( t thuộc Z)

Ta có phương trình : \(t\left(y+2\right)=y-1\)

,+) Với y=-2 => y+2 =0 => y-1 =0 => y=1 vô lí

+) Với y khác -2

Chia ca hai vế cho y+2 ta có:

\(t=\frac{y-1}{y+2}=1-\frac{3}{y+2}\)

Tìm y để t thuộc Z

Ta có: y+2 thuộc U(3)={-3; -1; 1; 3}

+) y+2 =-3 => y=-5 => t=2 => x^2 =(y+1)t= -8 ( loại)

+) y+2 =-1 => y=-3 => t=2 => x^2 =(y+1)t= -4 ( loại)

+) y+2=1  => y=-1 => t=-2 => x^2= 0  => x=0 

+) y+2 =3 => y=1 => t=0 => x^2 =0  => x=0

THử lại thấy x=0; y=1 và x=0 ;y=-1 thỏa mãn

Vậy ...

1 tháng 11 2016

ngu ngườileuleu

1 tháng 11 2016

chó nguoaoachó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoa​chó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoachó nguoaoa

4 tháng 11 2017

Cô Huyền giải nhầm rồi.

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow y^2+\left(y+1\right)^2=x^4+\left(x+1\right)^4\)

\(\Leftrightarrow y^2+y=x^4+2x^3+3x^2+2x\)

\(\Leftrightarrow y^2+y+1=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)là số chính phương

Xét \(y\ge0\)

\(\Rightarrow y^2< y^2+y+1\le\left(y+1\right)^2\)

\(\Rightarrow y^2+y+1=\left(y+1\right)^2\)

\(\Leftrightarrow y=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Tương tự cho trường hợp còn lại

3 tháng 11 2017

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow x^4+2x^2+1-y^2-2y-1=y^2-x^4\)\(\Leftrightarrow2x^4+2x^2-2y^2-2y=0\)

\(\Leftrightarrow x^4+x^2-y^2-y=0\Leftrightarrow\left(x^4-y^2\right)+\left(x^2-y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(x^2+y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-y=0\\x^2+y+1=0\end{cases}}\)

TH1: y = x2 . Vậy ta có cặp (x;y) thỏa mãn là (k; k2) (k là số nguyên)

TH2: y = - x2 - 1. Vậy ta có cặp (x;y) thỏa mãn là (k; - k2 - 1) (k là số nguyên)