Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2.\left(y-2\right)}{6}=\frac{3.\left(z-3\right)}{12}\)
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{4-6+12}=1\)
\(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow y=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
Vậy x=3,y=5,z=7
1) a.Từ\(\frac{x}{y}=\frac{11}{7}\Rightarrow\frac{x}{11}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{11}=\frac{y}{7}=\frac{x-y}{11-7}=\frac{12}{4}=3\)
\(\Rightarrow x=3.11=33;y=3.7=21\)
b) \(\sqrt{2x-3}=5\)
\(2x-3=25\)
\(2x=28\)
\(x=14\)
2) a) \(\frac{3}{2}-\frac{5}{6}:\left(\frac{1}{2}\right)^2+\sqrt{4}=\frac{3}{2}-\frac{5}{6}:\frac{1}{4}+2\)
\(=\frac{3}{2}-\frac{10}{3}+2\)
\(=\frac{1}{6}\)
_Học tốt nha_
1. a, \(\frac{x}{y}=\frac{11}{7}\)và x-y=12
\(\Rightarrow\frac{x}{11}=\frac{y}{7}\)và x-y=12
Áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{11}=\frac{y}{7}=\frac{x-y}{11-7}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{11}=3\\\frac{y}{7}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=33\\y=21\end{cases}}\)
Vậy
b,\(\sqrt{2x-3}\)=5
\(\Rightarrow2x-3=25\)
\(\Rightarrow2x=28\)
\(\Rightarrow x=14\)
c,\(\frac{3}{2}-\frac{5}{6}:\left(\frac{1}{2}\right)^2+\sqrt{4}\)
\(=\frac{3}{2}-\frac{5}{6}:\frac{1}{4}+2\)
\(=\frac{3}{2}-\frac{10}{3}+2\)
\(=\frac{9}{6}-\frac{20}{6}+2\)
\(=\frac{-11}{6}+2\)
\(=\frac{1}{6}\)
\(a,\Leftrightarrow\left[{}\begin{matrix}-\dfrac{4}{3}x+\dfrac{1}{2}=\dfrac{1}{2}\\-\dfrac{4}{3}x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{4}\end{matrix}\right.\\ c,\Leftrightarrow\left(\dfrac{1}{2}\right)^x\left(1+\dfrac{1}{4}\right)=\dfrac{5}{4}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^x=1\Leftrightarrow x=0\)
b: Ta có: \(3^x+3^{x+2}=20\)
\(\Leftrightarrow3^x\cdot10=20\)
\(\Leftrightarrow3^x=2\left(loại\right)\)
a)Đặt k, ta có:
x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z
thay x/2=k =>2k=x; y/3=k =>3k=y; z/5=k =>5k=z vào x2+y2+z2=152, tao có:
(2k)2+(3k)2+(5k)2=152
=>4xk2+9xk2+25xk2=152
=>k2x38=152
=>k2=4=>k=2 hoặc k=-2
Với k=2
=>x=4;y=6;z=10
Với k=-2
=>x=-4;y=-6;z=-10
Vậy (x=4;y=6;z=10) hoặc (x=-4;y=-6;z=-10)
b)Áp dụng dãy tỉ số bằng nhau, ta có :
x/4=y/7=z/9=(2x)/8=(2x-y)/8-7=2
=>x=8;y=14;z=18
Vậy........
Bài2:
Vì x:y:z tỉ lệ với 4:5:6 =>\(\dfrac{x}{4}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\) mà \(x^2\)-\(2y^2\)+\(z^2\)= 18
Ta có:
\(\dfrac{x}{4}\)=\(\dfrac{x^2}{16}\)
\(\dfrac{y}{5}\)=\(\dfrac{2y}{5}\)=\(\dfrac{2y^2}{10}\)
\(\dfrac{z}{6}\)=\(\dfrac{z^2}{36}\)
Áp dụng tính chất dãy tỉ số= nhau,ta có:
\(\dfrac{x^2}{16}\)=\(\dfrac{2y^2}{10}\)=\(\dfrac{z^2}{36}\)=\(\dfrac{x^2-2y^2+z^2}{16-10+36}\)=\(\dfrac{18}{42}\)=\(\dfrac{3}{7}\)
\(\dfrac{x^2}{16}\)=\(\dfrac{3}{7}\)
=> \(x^2\)=\(\dfrac{48}{7}\)
=> x=\(\sqrt{\dfrac{48}{7}}\)
\(\dfrac{2y^2}{10}\)=\(\dfrac{3}{7}\)
=> \(2y^2\)=\(\dfrac{30}{7}\)
2y=\(\sqrt{\dfrac{30}{7}}\)
y=\(\sqrt{\dfrac{30}{7}}\):2
y= 1,035098339.....
\(\dfrac{z^2}{36}\)=\(\dfrac{3}{7}\)
=> \(z^2\)=\(\dfrac{108}{7}\)
z= \(\sqrt{\dfrac{108}{7}}\)
Ta có: \(\frac{x+2}{3}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2\left(x+2\right)}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
\(\Rightarrow\frac{2x+4}{6}=\frac{y-1}{4}=\frac{z+5}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau được:
\(\frac{2x+4-\left(y-1\right)+z+5}{6-4+7}=\frac{2x+4-y+1+z+5}{6-4+7}=\frac{\left(2x-y+z\right)+\left(4+1+5\right)}{6-4+7}\)
\(=\frac{17+10}{9}=\frac{27}{9}=3\)
Suy ra: \(2x+4=6.3\Rightarrow2x=14\Rightarrow x=7\)
\(y-1=3.4\Rightarrow y=13\)
\(z+5=3.7\Rightarrow z=16\)
Vậy x = 7 ; y = 13; z = 16