K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

Ta có : 3x = 2y => x/2 = y/3

7x = 5z => x/5 = z/7

 => x/2 = y/3 ; x/5 = z/7

 => x/10 = y/15 ; x/10 = z/21

 => x/10 = y/15 = z/21

 Áp dụng tính chất dãy tỉ số bằng nhau :

 x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2

đến đây xét x,y,z

 Câu b tương tự

3 tháng 10 2016

b) \(x:y:z=2:3:5\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

\(x.y.z=810\Rightarrow2k.3k.5k=810\Rightarrow30k^3=810\Rightarrow k^3=27\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}x=6\\y=9\\z=15\end{cases}}\)

5 tháng 10 2016

x=6

y=9

z=15

16 tháng 7 2018

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)

Do đó: x=20; y=30; z=42

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

29 tháng 9 2016

x=18

y=16

z=15

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5

18 tháng 10 2020

a) Ta có\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

=>\(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)

=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)(day tỉ số bằng nhau)

=> x = 18 ; y = 16 ; z = 15

b) Ta có : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)

Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=2k\end{cases}}\)

Khi đó 5x + y - 2z = 28

<=> 5.5k + 3k - 2.2k = 28

=> 25k + 3k - 4k = 28

=> 24k = 28

=> k = 7/6

=> x = 35/6 ; y = 7/2 ; z = 7/3

c) \(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\)

=> \(\frac{1}{2}x.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}=\frac{3z}{4}.\frac{1}{6}\)

=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y}{12-9}=\frac{15}{3}=5\)(dãy tỉ số bằng nhau)

=> x = 60 ; y = 45 ; z = 40

18 tháng 10 2020

A. Theo đề ta có: 

  -  \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)

=>\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)

  -    \(x+y+z=49\)

=> \(12x+12y+12=49\cdot12=588\)

      Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{588}{49}=12\)

Còn lại bạn tự làm.

B. Theo đề ta có:

  - \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\)

=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}\)

     Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}=\frac{5x+y-2z}{50+6-8}=\frac{28}{48}\)

     Còn lại bạn tự làm.

C. Theo đề ta có:

     \(\frac{1}{2}x=\frac{2y}{3}\)=>\(\frac{x}{2}=\frac{2y}{3}\)=>\(\frac{2x}{4}=\frac{2y}{3}\)

     \(x-y=15\)=> \(2x-2y=30\)

     Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

     \(\frac{2x}{4}=\frac{2y}{3}=\frac{2x-2y}{4-3}=20\)

     Ta suy ra:

    \(\frac{2y}{3}=20\)  => \(2y=20\cdot3=60\)=> \(y=60:2=30\)=> \(\frac{2y}{3}=\frac{2\cdot30}{3}=20=\frac{3z}{4}\)

 => \(3z=20\cdot4=80\)=> \(z=\frac{80}{3}\)

      Còn lại bạn tự làm, phần tính toán của mình có thể sai sót, mong bạn thông cảm và nhớ kiểm tra lại nhé !

31 tháng 8 2021

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

31 tháng 8 2021

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)