Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)=>(2n+10)-10 chia hết cho n+5
=>2(n+5)-10 chia hết cho n+5
Mà 2(n+5) chia hết cho n+5
=>10 chia hết cho n+5
=>n+5 thuộc Ư(10)={1;2;5;10;-1;-2;-5;-10}
=>n thuộc {-4;-3;0;5;-6;-7;-10;-15}
b)=>x(x+2) chia hết cho x+2
Mà x(x+2) chia hết cho x+2
=>Mọi số nguyên x đều thỏa mãn
a, Ta có x-4 \(⋮\)x+1
\(\Rightarrow\left(x+1\right)-5⋮x+1\)
\(\Rightarrow x+1\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)
Ta có bảng giá trị
x+1 | -1 | -5 | 1 | 5 |
x | -2 | -6 | 0 | 4 |
Vậy x={-2;-6;0;4}
b.2x +5=2x-2+7=2(x-1)+7
=> 7 chiahetcho x-1
tu lam
c.4x+1 = 4x+4+(-3)=2(2x+2)-3
tu lAM
d.x^2-2x+3=x^2-2x+1+2=(x+1)^2+2
tu lam
e.x(x+3)+9=>
tu lam
a,x+1 chia hết cho 2x+3
=>2(x+1)chia hết cho 2x+3
=>2x+2 chia hết cho 2x+3
=>(2x+3)-1chia hết cho 2x+3
=>1chia hết cho 2x+3
do x thuộc Z =>2x+3 thuộc Z
=>2x+3 thuộc {1;-1}
=>2x thuộc {-2;-4}
=>x thuộc {-1;-2} Thử lại...
b,2x-3 chia hết cho 3x+1
=>3(2x-3)chia hết cho 3x+1
=>6x-9chia hết cho 3x+1
=>(6x+2)-11 chia hết cho 3x+1
do 6x+2 chia hết cho 3x+1
=>11 chia hết cho 3x+1
x thuộc Z =>3x+1 thuộc Z=>3x+1 thuộc Z=>3x+1 thuộc{1;-1;11;-11}
k mình nha !
cảm ơn cậu nhé cậu k mình cho mình lên điểm hỏi đáp được không
Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.
Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.
1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)
- Ta thấy y=0; 1 không phải là nghiệm của bài toán.
- Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
- Với y>=3 thì:
- Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)
\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)
- Thay vào (1) ta có: \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)
\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)
\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)
\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)
\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)
Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.
- Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)