K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Để P nguyên 

=> \(x-2\)\(⋮\)\(x+1\)

=> \(x+1-3\)\(⋮\)\(x+1\)

=> \(3\)\(⋮\)\(x+1\)

=> x +1 thuộc Ư(3) = {1 ;-1 ; 3 ; -3}

Ta có bảng sau : 

x + 11-13-3
x0-22-4

Vậy x = {0 ; -2 ; 2 ; 4}

25 tháng 6 2017

P=x-2/x+1  = x+1/ x+1 - 3/x+1 = 1 - 1/x+1

Để P thuộc Z => 1/x+1 thuộc Z => 1 chia hết cho x+1 => x+1 thuộc Ư(1)

=> x+1 thuộc { -1;1}

=> x thuộc { -2; 0}

4 tháng 3 2020

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(=>\frac{y-x}{xy}=\frac{1}{xy}\)

\(=>xy^2-x^2y=xy\)

\(=>xy^2-x^2y-xy=0\)

\(=>x.\left(y^2-xy-y\right)=0\)

\(=>\orbr{\begin{cases}x=0\\y^2-xy-y=0\end{cases}}\)

Ta thấy \(y^2-xy-y=0\)

\(=>y.\left(y-x-y\right)=0\)

\(=>\orbr{\begin{cases}y=0\left(2\right)\\y-y=0\end{cases}}\)

Từ 1 và 2 => x = y = 0

4 tháng 3 2020

\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x}.\frac{1}{y}\)

\(\Rightarrow\frac{y-x}{xy}=\frac{1}{xy}\)

\(\Rightarrow y-x=1\)

Vậy x,y có dạng \(\hept{\begin{cases}x=y-1\\y=x+1\end{cases}}\)với \(y\ne1;x\ne-1;x\ne0;y\ne0\)

10 tháng 12 2018

\(\frac{x+5}{x+2}\inℤ\Leftrightarrow x+5⋮x+2\Leftrightarrow\left(x+5\right)-\left(x+2\right)⋮x+2\)

\(\Leftrightarrow3⋮x+2\Leftrightarrow x+2\in\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow x\in\left\{-3;-1;-5;1\right\}\)

16 tháng 5 2020

khó quá

16 tháng 8 2017

A=2n-1/n-3

A=2(n-3)+5/n-3

A=2+(5/n-3)

để A nguyên 

thì2+(5/n-3) nguyen

thì5/n-3 nguyên

9

(n-3)(U(5)=(-5 ; -1 ; 1 ; 5 )

n((-2;2;4;8)

16 tháng 8 2017

muốn  A=2n-1/n-3 có giá trị là số nguyên thì

2n-1 chia hết cho n-3

(2n-6)+5 chia hết cho n-3

(2n-2*3)+5 chia hết cho n-3

2(n-3)+5 chia hết cho n-3

  • vì 2(n-3) chia hết cho n-3 suy ra 5 chia hết cho n-3
  • suy ra n-3 thuộc Ư(5)
  • mà Ư(5)={1,5,-1,-5}
  • ta có 
  • n-3=1 suy ra n=4
  • n-3=5 suy ra n=8
  • n-3=-1 suy ra n=2
  • n-3=-5 suy ra n=-2 
  • Ý bạn Là Vậy Hả 
  • .........
  •  
11 tháng 12 2018

\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+6}\)

\(\Leftrightarrow\left(x-1\right)^{x+6}-\left(x-1\right)^{x+2}=0\)

\(\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^4-1\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^4=1\end{cases}}\)

\(\Leftrightarrow x-1=0\left(h\right)x-1=1\left(h\right)x-1=-1\)

\(\Leftrightarrow x=1\left(h\right)x=2\left(h\right)x=0\)

Vậy \(x\in\left\{0;1;2\right\}\)

11 tháng 12 2018

(h) là j vậy bạn

27 tháng 6 2018

Để M là số nguyên

Thì (x2–5) chia hết cho (x2–2)

==>(x2–2–3) chia hết cho (x2–2)

==>[(x2–2)—3] chia hết cho (x2–2)

Vì (x2–2) chia hết cho (x2–2)

Nên 3 chia hết cho (x2–2)

==> (x2–2)€ Ư(3)

==> (x2–2) €{1;-1;3;-3}

TH1: x2–2=1

x2=1+2

x2=3

==> ko tìm được giá trị của x

TH2: x2–2=-1

x2=-1+2

x2=1

12=1

==>x=1

TH3: x2–2=3

x2=3+2

x2=5

==> không tìm được giá trị của x

TH4: x2–2=-3

x2=-3+2

x2=-1

(-1)2=1

==> x=-1

Vậy x € {1;—1)

15 tháng 10 2018

\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)

\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)

\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\) 

\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\)