K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2023

Ta có (3x- 15) chia hết cho x - 4

<=> (3x - 12 - 3) chia hết cho x -4

<=> \([3\left(x-4\right)\) -3 \(]\)chia hết cho x - 4

<=> -3 chia hết cho x - 4

<=> x - 4 \(\in\) Ư(-3) = \(\left\{1;-1;3;-3\right\}\)

<=> x \(\in\left\{5;3;7;1\right\}\)

14 tháng 1 2023

ô bạn đọc đêm bên làn nước hả:))))

5 tháng 5 2020

Đề dài quá làm không nổi ... Làm mẫu 1 - 2 ý thôi nhá

2x + 1 chia hết cho x - 3

=> 2(x - 3) + 7 chia hết cho x - 3

=> 2x - 6 + 7 chia hết cho x -3

=> 7 chia hết cho x - 3

=> x - 3 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }

x-3-7-11

7

x-42410

x - 15 chia hết cho x + 2

=> x + 2 - 17 chia hết cho x + 2

=> 17 chia hết cho x + 2

=> x + 2 thuộc Ư(17) = { -17 ; -1 ; 1 ; 7 }

x+2-17-117
x-17-3-15

Các ý còn lại làm tương tự

Tham khảo:Tìm x,y thuộc z sao cho 3x+1:hết cho y và 3y+1 :hết cho x?

Bạn phải hiểu một điều đơn giản: với người khác thì vấn đề của họ có ưu tiên số 1. Bạn cần gấp không có nghĩa là họ phải vứt việc của họ để chạy tới giúp. Vì mình có phải cái rốn của vũ trụ đâu. Đấy là chưa kể có người bó tay, có người không muốn giúp. 
Mà bạn đóng 1 chủ đề đi. 1 vấn đề thì mở 2 chủ đề để làm gì? 
------ 
Có thể bạn sẽ nói: tôi không cần nữa, nhưng tôi gửi lên vì có thể ai đó cũng quan tâm. 
Tôi dùng phương pháp "cần cù" 
--------------- 
1. Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y 
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3) 
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13. 
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên) 
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8 
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4 
=> nghiệm (x, y) = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13) 

2. Ta tìm 2 nghiệm x, y < 0. Đặt x1 = -x > 0, y1 = -y > 0. 
3x + 1 = -3x1 + 1 = - (3x1 - 1) chia hết cho y = -y1, tức (3x1 - 1) chia hết cho y1. Tương tự (3y1 - 1) chia hết cho x1. Ta tìm x ≤ y, tức y1 ≤ x1, các nghiệm còn lại có được bằng cách hoán vị x và y. 
3x1 - 1 ≥ 3y1 - 1 = kx1, với k là số tự nhiên => k = 1, 2 
Với k = 1=> x1 = 3y1 - 1, 3x1 - 1 = 9y1 - 4 chia hết cho y1 <=> 4 chia hết cho y1 <=> y1 = 1 và x1 = 2, hoặc y1 = 2 và x1 = 5, hoặc y1 = 4 và x1 = 11 
Với k = 2 => 3y1 - 1 = 2x1, 3x1 - 1 = (9y1 - 5) / 2 = my1 (với m tự nhiên) 
=> (9 - 2m)y1 = 5 => y1 là ước của 5 <=> y1 = 1 và x1 = (3y1 - 1) / 2 = 1, hoặc y1 = 5 và x1 = 7 
=> nghiệm (x, y) = (-11, -4), (-7, -5), (-5, -2), (-2, -1), (-1, -1) và (-1, -2), (-2, -5), (-4, -11), (-5, -7) 

3. Ta tìm nghiệm y < 0 < x, nghiệm x < 0 < y có được bằng cách hoán vị x và y. 
Ta đặt y1 = - y > 0. 
3x + 1 chia hết cho y = -y1, tức chia hết cho y1. 3y + 1 = -(3y1 - 1) chia hết cho x, tức (3y1 - 1) chia hết cho x. 
3a. y1 ≤ x 
3x + 1 ≥ 3y1 + 1 > 3y1 - 1 = kx => k = 1, 2 (3y1 - 1 không chia hết cho 3) 
Với k = 1 => x = 3y1 - 1 => 3x + 1 = 9y1 - 2 chia hết cho y1 <=> 2 chia hết cho y1 <=> y1 = 1 và x = 3y1 - 1 = 2 hoặc y1 = 2 và x = 5 
Với k = 2 => 3y1 - 1 = 2x => 3x + 1 = (9y1 - 1) / 2 = my1(m tự nhiên) 
(9 - 2m)y1 = 1 => y1 = 1 => x = (3y1 - 1) / 2 = 1 
=> nghiệm (x, y) = (1, -1), (2, -1), (5, -2) 

3b. x < y1 
ky1 = 3x + 1 < 3y1 + 1 => k = 1, 2 (3x + 1) không chia hết cho 3) 
Với k = 1 => y1 = 3x + 1 => 3y1 - 1 = 9x + 2 chia hết cho x <=> 2 chia hết cho x <=> x = 1 và y1 = 3x + 1 = 4, hoặc x = 2 và y1 = 7 
Với k = 2 => 2y1 = 3x + 1 => 3y1 - 1 = (9x + 1) / 2 = mx (m tự nhiên) 
=> (2m - 9)x = 1 => x = 1 => y1 = (3x + 1) / 2 = 2 
=> nghiệm (x, y) = (1, -2), (1, -4), (2, -7) 

Vậy nghiệm x, y khác dấu là: (x, y) = (1, -1), (2, -1), (5, -2), (1, -2), (1, -4), (2, -7) và (hoán vị) (-1, 1), (-1, 2), (-2, 5), (-2, 1), (-4, 1), (-7, 2) 
------------- 
Kết luận: tất cả các nghiệm: 
(x, y) = (-11, -4), (-7, -5), (-7, 2), (-5, -7), (-5, -2), (-4, -11), (-4, 1), (-2, -5), (-2, -1), (-2, 1), (-2, 5), (-1, -2), (-1, -1), (-1, 1), (-1, 2), (1, -4), (1, -2), (1, -1), (1, 1), (1, 2), (1, 4), (2, -7), (2, -1), (2, 1), (2, 7), (4, 1), (4, 13), (5, -2), (5, 8), (7, 2), (8, 5), (13, 4) 
----------- 
Tất nhiên là tôi chưa kiểm tra lại

31 tháng 1 2018

bạn ấy cho đề tham khảo sai r

+) 4x+11 chia hết cho x+2

=> 4x+8+3 chia hết cho x+2

=> 4(x+2)+3 chia hết cho x+2

=> 4(x+2) chia hết cho x+2 ; 3 chia hết cho x+2

=> x+2 thuộc Ư(3)={-1,-3,1,3}

=>x={-3,-5,-1,1}

+) 3x-5 chia hết cho x-1

=> 3x-3-2 chia hết cho x-1

=> 3(x-1)-2 chia hết cho x-1

=> 3(x-1) chia hết cho x-1 ; 2 chia hết cho x-1

=> x-1 thuộc Ư(2)={-1,-2,1,2}

=> x={0,-1,2,3}

DD
30 tháng 12 2021

b) \(3x+9=3x+6+3=3\left(x+2\right)+3⋮\left(x+2\right)\Leftrightarrow3⋮\left(x+2\right)\)

\(\Leftrightarrow x+2\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow x\in\left\{-5,-3,-1,1\right\}\).

a), c) tương tự. 

d) \(\left(2x+1\right)⋮\left(3x-1\right)\Rightarrow3\left(2x+1\right)=6x+3=6x-2+5=2\left(3x-1\right)+5⋮\left(3x-1\right)\)

\(\Leftrightarrow5⋮\left(3x-1\right)\Leftrightarrow3x-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow x\in\left\{0,2\right\}\)(vì \(x\)nguyên) 

Thử lại đều thỏa mãn. 

24 tháng 2 2018

27 tháng 1 2016

3x chia het cho x - 1 nen        (3x - 3) + 3 chia het cho x - 1 

                                            3( x - 1 ) + 3 chia het cho x - 1 

      vi 3(x - 1 ) chia het cho x - 1

          nen    3 chia het cho x - 1

x - 1 \(\in\)U (3)= { -1 ;-3;1;3}

\(\in\){ -2;0;2;4}

tick minh nha ban , thanks

27 tháng 1 2016

Ta tìm nghiệm x, y > 0. Ta tìm nghiệm y ≤ x, các nghiệm còn lại có được bằng cách hoán vị x và y 
3x + 1 ≥ 3y + 1 = kx, với k là số tự nhiên => k = 1, 2, 4 (3y + 1 không chia hết cho 3) 
Với k = 1 => 3y + 1 = x, 3x + 1 = 9y + 4 chia hết cho y <=> 4 chia hết cho y <=> y = 1 và x = 3y + 1 = 4, hoặc y = 2 và x = 3y + 1 = 7, hoặc y = 4 và x = 3y + 1 = 13. 
Với k = 2 => 3y + 1 = 2x, 3x + 1 = (9y + 5) / 2 = my (với m tự nhiên) 
=> (2m - 9)y = 5 => y là ước của 5 <=> y = 1 và x = (3y + 1) / 2 = 2, hoặc y = 5 và x = (3y + 1) / 2 = 8 
Với k = 4 => 3x + 1 ≥ 4x => 1 ≥ x ≥ 1 => x = 1 => 3x + 1 = 4 chia hết cho y <=> y = 1, 2 hoặc 4 
=> nghiệm x = (1, 1), (1, 2), (1, 4), (2, 1), (4, 1), (7, 2), (8, 5), (13, 4) và (hoán vị) (2, 7), (5, 8), (4, 13) 

22 tháng 1 2020

a) \(x^2+x+1=x\left(x+1\right)+1\)

Vì \(x\inℤ\)\(\Rightarrow x\left(x+1\right)⋮x+1\)\(\Rightarrow\)Để \(x^2+x+1⋮x+1\)thì \(1⋮x+1\)

\(\Rightarrow x+1\inƯ\left(1\right)=\left\{-1;1\right\}\)\(\Rightarrow x\in\left\{-2;0\right\}\)

Vậy \(x\in\left\{-2;0\right\}\)

b) \(3x-8=3x-12+4=3\left(x-4\right)+4\)

Vì \(3\left(x-4\right)⋮x-4\)\(\Rightarrow\)Để \(3x-8⋮x-4\)thì \(4⋮x-4\)

\(\Rightarrow x-4\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Lập bảng giá trị ta có: 

\(x-4\)\(-4\)\(-2\)\(-1\)\(1\)\(2\)\(4\)
\(x\)\(0\)\(2\)\(3\)\(5\)\(6\)\(8\)

Vậy \(x\in\left\{0;2;3;5;6;8\right\}\)