K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2015

Với x= 0 là nghiệm của pt

Với x=-1 là ngiệm của pt

Với x=1 không là nghiệm của pt

Với x khác ba già trị trên thì

Nên x thuộc Z ; x2>x

Ta có: x2+x+1 > 0 với mọi x thuộc Z nên x+ x+ x + 1 >x3

Mặt khác: 2x2+2x>0 nên (x+1)3>x+ x+ x + 1

nên  (x+1)3>x+ x+ x + 1 >x3   khong có gt của x.

Vậy x=-1 hoặc x=0

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết

19 tháng 8 2020

\(B=x^5-x+7\)

\(B=x\left(x^4-1\right)+6+1\)

\(B=x\left(x^4-x^2+x^2-1\right)+6+1\)

\(B=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+6+1\)

Ta có: \(x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+6\)chia hết cho 3

=> B chia 3 dư 1

=> B không phải là scp với mọi x thuộc Z+( đpcm )

5 tháng 2 2017

1)

\(p=4x+\frac{1}{x^2}+3\)=> x càng nhỏ thì P càng nhỏ => không có GTNN

2)

\(A=x+\frac{2}{x^2}+4\)

x thuộc z=> x=+-1

5 tháng 2 2017

kiểm tra lại đề xem chuẩn chưa nhé

18 tháng 11 2020

\(\text{đen ta }=\left(n+4\right)^2-4\left(4n-25\right)=n^2+116\text{ là số chính phương}\)

đến đây thì là 1 bài đơn giản