K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

a) Ta có : x - 4 chia hết cho x + 1

=> x + 1 - 5 chia hết cho x + 1

=> 5 chia hết cho x + 1

=> x + 1 thuộc Ư(5) = {-5;-1;1;5}

=> x = {-6;-2;0;4}

b) 3x - 1 chia hết cho x - 4

=> 3x - 12 + 11 chia hết cho x - 4

=> 3(x - 4) + 11 chia hết cho x - 4

=> 11 chia hết cho x - 4

=> x - 4 thuộc Ư(11) = {-11;-1;1;11}

=> x = {-7;3;5;15}

21 tháng 7 2017

a,x-4 chia hết cho x+1

\(\Rightarrow\)x-(1+3) chia hết cho x+1

Mà x+1 chia hết cho x+1 nên 3 chia hết cho x+1

\(\Rightarrow\)x thuộc Ư(3)={1;3}

\(\Rightarrow\)x thuộc {0;2}

26 tháng 1 2017

3x+2\(⋮\)x-1

<=> 3x - 3 + 5 \(⋮\)x - 1

Vì 3x - 3 \(⋮\)x - 1 mà  3x - 3 + 5 \(⋮\)x - 1 nên:

=> 5 \(⋮\)x - 1

x - 1 \(\in\){ -5;-1;1;5}

=> x \(\in\){ -4;0;2;6}

Vậy x = { -4;0;2;6}

Theo đề bài, ta có: \(3x-4⋮x-1\)

\(\Rightarrow3\left(x-1\right)-1⋮x-1\)

\(\Rightarrow-1⋮x-1\)

Vì \(x\in Z\Rightarrow x-1\inƯ\left(-1\right)=\left\{\mp1\right\}\)

Ta có các trường hợp sau:

\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

Vậy \(x\in\left\{2;0\right\}\)

20 tháng 2 2020

3x - 4 \(⋮\) x - 1

\(\Rightarrow3\left(x-1\right)-1⋮x-1\)

\(\Rightarrow1⋮x-1\)

\(\Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow x\in\left\{0;2\right\}\)

Vậy \(x\in\left\{0;2\right\}\)

@@ Học tốt

7 tháng 4 2016

x+1 chia hết cho x-5 <=> x+1/x-5 thuộc Z <=> <x-5>+6/x-5 thuộc Z  <=> 6/x-5 thuộc Z

<=> 6 chia hết cho x-5 <=>x-5 thuộc Ư<6>=  <-6;-3;-2;-1;1;2;3;6>

x-5-6-3-2-11236
x-1234678

11

 Vậy..................................................

8 tháng 6 2016

Câu 1.

Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.

  • Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).
  • Số dư của phép chia này là 7 nên ta có:

\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)

Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:

\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)

  • Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.

\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)

\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)

\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)

  • Từ (1) và (2) ta có:

\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)

  • Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành  \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
  • Viết kết quả các phép chia này ta được:

\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)

26 tháng 6 2023

ĐKXĐ: \(x\ne\pm3\)

a

Khi x = 1:

\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)

Khi x = 2:

\(A=\dfrac{3.2+2}{2-3}=-8\)

Khi x = \(\dfrac{5}{2}:\)

\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)

b

Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên

\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)

Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)

\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)

c

Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên

\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)

\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)

d

\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)

=> Để A, B cùng là số nguyên thì x = 4.