Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Do (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)
2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}
3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x2 - 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên phair cos thừa số be hơn 0.
=> 0 < x2 < 11
Từ 3 điều trên ==> x2 = 9 => x = 3
Với x^2<=1
=>(x^2-1)<=0,(x^2-4)<=0
(x^2-7)<=0,(x^2-10<=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
+)với x^2>=10
=>(x^2-1)>=0,x^2-4>=0
x^2-7>=0,x^2-10>=0
=>(x^2-1)(x^2-4)(x^2-7)(x^2-10)>=0 (loại)
Vậy 1<x^2<10
vì x nguyên nên chỉ có 4 trường hợp:
x=2,x=3,x=-2,x=-3
Thử vào thì ra x=3 hoặc x=-3.
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
1) (x^2 - 1)(x^2 - 4)(x^2 - 7)(x^2 - 10) < 0
<=> [(x^2 - 1)(x^2 - 10)][(x^2 - 4)(x^2 - 7)] < 0
<=> (x^4 - x^2 - 10x^2 + 10)(x^4 - 4x^2 - 7x^2 + 28) < 0
<=> (x^4 - 11x^2 + 10)(x^4 - 11x^2 + 28) < 0
=> x^4 - 11x^2 + 10 và x^4 - 11x^2 + 28 là 2 số trái dấu
Mà x^4 - 11x^2 + 10 < x^4 - 11x^2 + 28
Nên \(\left\{\begin{matrix}x^4-11x^2+10< 0\\x^4-11x^2+28>0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left(x^2-\frac{11}{2}\right)^2-\frac{81}{4}< 0\\\left(x^2-\frac{11}{2}\right)^2-\frac{9}{4}>0\end{matrix}\right.\)\(\Leftrightarrow\frac{9}{4}< \left(x^2-\frac{11}{2}\right)^2< \frac{81}{4}\)
\(\Rightarrow\left[\begin{matrix}\frac{3}{2}< x^2-\frac{11}{2}< \frac{9}{2}\\-\frac{3}{2}>x^2-\frac{11}{2}>-\frac{9}{2}\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}7< x^2< 10\\4>x^2>1\end{matrix}\right.\)
do \(x\in Z\Rightarrow x^2\in N\)=> x2 = 9\(\Rightarrow\left[\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy x = 3; x = -3
2) A = |x - a| + |x - b| + |x - c| + |x - d|
A = |x - a| + |x - b| + |c - x| + |d - x|\(\le\)
|x - a + x - b + c - x + d - x|= |c - a + d - b|
= c - a + d - b ( vì c - a > 0; d - b > 0)
Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-a\ge0\\x-b\ge0\\x-c\le0\\x-d\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.\)
Vậy Min A = c - a + d - b khi \(\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.\); a < b < c < d
\(\left\{\begin{matrix}a\le x\\b\le x\\c\ge x\\d\ge x\end{matrix}\right.;a< b< c< d}\)
Ta có tích của 4 số là số âm nên phải có 1 hoặc 3 số âm để thỏa mãn mà (x2-10)<(x2-7)<(x2-4)<(x2-1).Xét 2 trường hợp:
+Có 1 số âm, 3 số dương:
(x2-10)<0<(x2-7)\(\Rightarrow\)7<x2<102\(\Rightarrow x^2=9\Rightarrow x=3\)hoặc \(x=3.\)
+Có 3 số âm, 1 số dương:
(x2-4)<0<(x2-1)\(\Rightarrow\)1<x2<42, mà a số nguyên nên x ko tồn tại.
Vậy \(x=3\)hoặc \(x=-3\)
lập bảng cho nành v10; v7\(=\sqrt{10};\sqrt{7}\)
x | -vc | -v10 | -v7 | -2 | -1 | 0 | 1 | 2 | v7 | v10 | +vc | ||||||||||
x+v10 | - | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
x+v7 | - | - | - | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
x+2 | - | - | - | - | - | 0 | + | + | + | + | + | + | + | + | + | + | + | ||||
x+1 | - | - | - | -- | - | 0 | + | + | + | + | + | + | + | + | + | ||||||
x-1 | - | - | - | - | 0 | + | |||||||||||||||
x-2 | - | - | - | - | 0 | + | |||||||||||||||
x-v7 | - | - | - | - | - | 0 | + | ||||||||||||||
x-v10 | - | - | - | - | - | - | 0 | + | |||||||||||||
VT | + | 0 | - | 0 | + | 0 | - | 0 | + | 0 | - | 0 | + | 0 | - | 0 | + | ||||
các khoảng x thỏa man la
-v10<x<-v7
-1<x<-2
1<x<2
v7<x<v10
x nguyen
=> x={-3,3}
https://olm.vn/hoi-dap/tim-kiem?q=Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:++(x2-1).(x2-4).(x2-7).(x2-10)%3C0&id=153167
Lời giải
"hàng tồn kho_ gặp chuyên gia đồ cổ _ không biết @ khai quật lên vậy" lớp 7 khó kinh
\(A=\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)\)
Với: x =0=>A=\(\left(-1\right)\left(-4\right)\left(-7\right)\left(-10\right)=280>0\) Loại
với x=+-11,+-2 => A =0 loại
với \(\left|x\right|\ge4\) các thừa số của A đều >0 => A>
còn duy nhất x=+-3 thử vào thấy A<0 => nhận
Tập nghiệm S={-3,3}
Bạn có lập bảng xét dấu với bài này nghiệm nguyên => không cần lập bảng