K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3+25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3+5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1+7\right)}{5^9.7^3\left(1+2^3\right)}\)

\(=\frac{2}{12}-\frac{5.8}{9}=\frac{1}{6}-\frac{40}{9}=\frac{-77}{18}\)

b ) 3n+2 - 2n+2 + 3n - 2n

= ( 3n+2 + 3n ) - ( 2n+2 + 2n )

= 3n ( 32 + 1 ) - 2n ( 22 + 1 )

= 3n.10 - 2n-1.2.5

= 3n.10 - 2n-1.10

= ( 3n - 2n-1 ).10 chia hết cho 10 ( đpcm )

Bài 2: 

1: \(5^n+5^{n+2}=650\)

\(\Leftrightarrow5^n\cdot26=650\)

\(\Leftrightarrow5^n=25\)

hay x=2

2: \(32^{-n}\cdot16^n=1024\)

\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)

hay n=-10

13: \(9\cdot27^n=3^5\)

\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)

=>3n=3

hay n=1

16 tháng 7 2018

\(a)A=\dfrac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\dfrac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

\(A=\dfrac{2^{12}.3^5-\left(2^2\right)^63.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\dfrac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3\right)^3.7^3+5^9.\left(7.2\right)^3}\)

\(A=\dfrac{2^{12}.3^5-2^{12}.3^5}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3-5^{10}.7^4}{5^6.7^3+5^9.7^3.2^3}\)

\(A=\dfrac{0}{2^{12}.3^6+2^{12}.3^5}-\dfrac{5^{10}.7^3\left(1-7\right)}{5^6.7^3\left(1+5^3+2^3\right)}\)

\(A=0-\dfrac{5^4.\left(-6\right)}{1+125+8}\)

\(A=0-\dfrac{625.\left(-6\right)}{134}\)

\(A=\dfrac{-3750}{134}\)\(=\dfrac{-1875}{67}\)

\(b)3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=(3^n.9+3^n)-\left(2^n.4+2^n\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

\(Suy\) \(ra:\) \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)

16 tháng 7 2018

b. Ta có: \(3^{n +2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=\left(3^n.3^2+3^n\right)-\left(2^{n-1}.2^3+2^{n-1}.2\right)\)

\(=3^n.\left(3^2+1\right)-2^{n-1}\left(2^3+2\right)\)

\(=3^n.10-2^{n-1}.10⋮10\)

14 tháng 1 2017

a) A = \(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)

=> A = \(\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{\left(2^2\right)^6.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{125^3.7^3+5^9.\left(2.7\right)^3}\)

=> A = \(\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{\left(5^3\right)^3.7^3+5^9.2^3.7^3}\)

=> A = \(\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3\left(1-7\right)}{5^9.7^3+5^9.2^3.7^3}\)

=> A = \(\frac{3-1}{3\left(3+1\right)}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3\left(1+2^3\right)}\)

=> A = \(\frac{2}{3.4}-\frac{5.\left(-6\right)}{9}\)

A = \(\frac{1}{3.2}-\frac{-30}{9}\)

A = \(\frac{1}{6}-\frac{-10}{3}\)

A = \(\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}\)

=> A = \(\frac{7}{2}=3\frac{1}{2}\)

vậy A = \(3\frac{1}{2}\)

b) ta có:

3n+2-2n+2+3n-2n = (3n+2+3n) - (2n+2-2n)

= 3n(9+1) - 2n(4+1)

= 3n.10 - 2n.5

ta thấy: 3n.10 \(⋮\) 10

2n là một số chẵn mà 1 số chẵn nhân vs 5 luôn ra kết quả có tận cùng bằng 0 => 2n.5 \(⋮\) 10

=> 3n. 10 - 2n.5 \(⋮\) 10

=> 3n+2-2n+2+3n-2n \(⋮\) 10 vs mọi số nguyên dương n ( đpcm)

a)=3^4<3.n<3^10

=>n=4;5;6;7;8;9

b)5^2<5^n-1<5^4

=>n-1=3=>n=4

c)5.5^2n==5^6

=>5^2n+1=5^6

=>n=7/2

8 tháng 9 2019

a) \(5^n.25=125^2\)

\(\Rightarrow5^n.5^2=\left(5^3\right)^2\)

\(\Rightarrow5^n.5^2=5^6\)

\(\Rightarrow5^n=5^6:5^2\)

\(\Rightarrow5^n=5^4\)

\(\Rightarrow n=4\)

Vậy \(n=4.\)

b) \(3^n.9^2=27^3\)

\(\Rightarrow3^n.\left(3^2\right)^2=\left(3^3\right)^3\)

\(\Rightarrow3^n.3^4=3^9\)

\(\Rightarrow3^n=3^9:3^4\)

\(\Rightarrow3^n=3^5\)

\(\Rightarrow n=5\)

Vậy \(n=5.\)

c) \(2^4.4^n=8^6\)

\(\Rightarrow\left(2^2\right)^2.4^n=2^{18}\)

\(\Rightarrow4^2.4^n=\left(2^2\right)^9\)

\(\Rightarrow4^2.4^n=4^9\)

\(\Rightarrow4^n=4^9:4^2\)

\(\Rightarrow4^n=4^7\)

\(\Rightarrow n=7\)

Vậy \(n=7.\)

Chúc bạn học tốt!

8 tháng 9 2019

Cảm ơn bn nhiều lắm !

\(\Leftrightarrow5^n\cdot5-5^n\cdot\dfrac{1}{5}=5^{12}\cdot24\)

\(\Leftrightarrow5^n\cdot\dfrac{24}{5}=5^{12}\cdot24\)

\(\Leftrightarrow5^n=5^{13}\)

hay n=13