Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2.x^x=10.3^{12}+8.27^4\)
\(2.x^x=10.3^{12}+8.3^{12}\)
\(2.x^x=3^{12}.\left(10+8\right)\)
\(2.x^x=3^{12}.18\)
\(2.x^x=3^{12}.2.3^3\)
\(2.x^x=3^{15}.2\)
\(x^x=3^{15}\)( Hình như sai đề )
b,\(3^{2x+2}=9^{x+3}\)
\(3^{2x+2}=3^{2x+3}\)
\(8-12x+6x^2-x^3\)
\(=\left(2-x\right)^3\)
\(125x^3-75x^2+15x-1\)
\(=\left(5x-1\right)^3\)
\(x^2-xz-9y^2+3yz\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
\(x^3-x^2-5x+125\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
\(x^3+2x^2-6x-27\)
\(=x^3+5x^2+9x-3x^2-15x-27\)
\(=x\left(x^2+5x+9\right)-3\left(x^2+5x+9\right)\)
\(=\left(x-3\right)\left(x^2+5x+9\right)\)
\(12x^3+4x^2-27x-9\)
\(=4x^2\left(3x+1\right)-9\left(3x+1\right)\)
\(=\left(3x+1\right)\left(4x^2-9\right)\)
\(=\left(3x+1\right)\left(2x-3\right)\left(2x+3\right)\)
\(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
\(a,2x-138=2^3:\left(-3\right)^2\)
\(\Rightarrow2x-138=8:9\)
\(\Rightarrow2x=\frac{8}{9}+138\)
\(\Rightarrow2x=\frac{1250}{9}\)
\(\Rightarrow x=\frac{626}{9}\)
\(10+2x=\left(-4\right)^5:\left(-4\right)^3\)
\(10+2x=-1024:\left(-64\right)\)
\(10+2x=16\)
\(2x=16-10\)
\(2x=6\)
\(x=6:2=3\)
\(a)3^x\cdot81^{2x+1}=81\\ 3^x\cdot\left(3^4\right)^{2x+1}=81\\ 3^x\cdot3^{8x+4}=3^4\\ 3^{9x+4}=3^4\\ \Leftrightarrow9x+4=4\\ \Leftrightarrow9x=0\\ \Rightarrow x=0\)
\(b)4^x-25=89\\ \Leftrightarrow4^x=64\\ \Leftrightarrow4^x=4^3\\ \Rightarrow x=3\)
Bài 1
a, 23 + ( x - 32 ) = 1
x - 32 = 1 - 23 = -7
x = -7 + 32
x = 2
b, 5 . (x+7) -10 = 40
5 . (x+7) = 50
x+7 = 50 :5 =10
x = 10 - 7
x = 3
\(M=2+2^3+2^5+2^7+....+2^{51}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)
\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)
\(=10+2^4.10+...+2^{48}.10\)
\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)
\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)
\(M=2+2^3+2^5+2^7+....+2^{51}.\)
\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)
\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)
\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)
\(=12+2^4.42+....+2^{46}.42\)
\(=12+7.3.2\left(2^4+...+2^{46}\right)\)
\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)
\(=10+7.3.2\left(2^4+....+2^{46}\right)\)
Ta có: \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7
Suy M không chia hết cho 7
\(x^3=216\)
\(x^3=6^3\)
\(\Rightarrow x=6\)
\(x^2=2^3+3^2+4^2\)
\(x^2=8+9+16\)
\(x^2=33\)
\(x=\sqrt{33}\)
\(x^3=x^2\)
\(x^3-x^2=0\)
\(x\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
a) x3 = 216
=> x3 = 63
=> x = 6
Vậy x = 6
b) x2 = 23 + 32 + 42
=> x2 = 8 + 9+ 16
=> x2 =33
=> \(x\in\varnothing\)( vì x thuộc N)
Vậy ...