Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
ta có \(\frac{6x-5}{1-2x}=\frac{6x-3-2}{1-2x}=\frac{-3\left(1-2x\right)}{1-2x}-\frac{2}{1-2x}\)
\(=-3-\frac{2}{1-2x}\)
ta có -3 thuộc Z suy ra \(\frac{2}{1-2x}\)phải thuộc Z
suy ra 1-2x thuộc Ư(2)=(1,-1,2,-2)
với 1-2x=1
x=0
1-2x=-1
x=1
1-2x=2
x=-\(\frac{1}{2}\)(loại)
1-2x=-2
x=\(\frac{3}{2}\)(loại)
vậy x thuộc (0,1) thì D thuộc Z
Bài 1:
a) Ta có: 2x + 2x+3 = 144
2x.(1+23) = 144
2x.9 = 144
2x = 16
x = 4
a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên
và x2 luôn tự nhiên => 5x âm
=> GTTĐ của x2 < GTTĐ của 5x
=> x < 5
=> x thuộc {4; 3; 2; 1;....}
Vậy....
P=\(2x^2+5x\)
=\(2\left(x^2+\frac{5}{2}x\right)\)
=\(2\left(x^2+2x.\frac{5}{4}+\frac{25}{16}-\frac{25}{16}\right)\)
= \(2\left(x+\frac{5}{4}\right)^2-\frac{25}{8}\)
de P nhan gia tri duong thi
\(2\left(x+\frac{5}{4}\right)^2>\frac{25}{8}\)
<=> \(\left(x+\frac{5}{4}\right)^2>\frac{25}{16}\)
<=> \(\orbr{\begin{cases}x+\frac{5}{4}>\frac{5}{4}\\x+\frac{5}{4}< \frac{-5}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>0\\x< \frac{-5}{2}\end{cases}}}\)
vay voi x>0 hoac x< -5/2 thi P dat gia tri duong
Chuc ban hoc tot