K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

mo sach ra ma tim

30 tháng 10 2017

Đặt A = 1/1.3 + 1/3.5 + 1/5.7 +........+ 1/(2n - 1)(2n + 1) 
2.A = 2/1.3 + 2/3.5 + 2/5.7 +........+ 2/(2n - 1)(2n + 1) 
2.A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/(2n - 1) - 1/(2n + 1) 
2.A = 1 - 1/(2n + 1) = 2n/(2n + 1) 
 A = n/(2n + 1)=49/99

Tự tính nha !

1 tháng 6 2016

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x-1\right)\left(2x+1\right)}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\) 

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{\left(2x-1\right)}-\frac{1}{\left(2x+1\right)}\)

\(2A=1-\frac{1}{2x+1}=\frac{2x}{2x+1}\)

\(A=\frac{x}{2x+1}\) 

Mà \(A=\frac{49}{99}\) \(\Leftrightarrow\frac{x}{2x+1}=\frac{49}{99}\Leftrightarrow x=49\)

18 tháng 11 2016

x=49

13 tháng 1 2017

\(a.\)

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)

\(\Rightarrow99x=49.\left(2x+1\right)\)

\(\Rightarrow99x=98x+49\)

\(\Rightarrow x=49\)

Vậy : \(x=49\)

\(b.\)

\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)

Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)

\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)

\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)

\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)

\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)

\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)

\(\Rightarrow-3^{x+1}=-9^{1006}\)

\(\Rightarrow-3^{x+1}=-3^{2012}\)

\(\Rightarrow x+1=2012\)

\(\Rightarrow x=2012-1\)

\(\Rightarrow x=2011\)

Vậy : \(x=2011\)

26 tháng 8 2021

3. a) \(đk:x\ne1;x\ne-2\)

Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)

Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:

x-11-12-2
x203-1

Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)

Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:

x+21-15-5
x-1-33-7

b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)

17 tháng 9 2020

\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\Leftrightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Leftrightarrow\frac{1}{2x+3}=\frac{1}{93}\)

\(\Leftrightarrow2x+3=93\)

\(\Leftrightarrow2x=90\)

\(\Leftrightarrow x=45\)

17 tháng 9 2020

\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)

\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)

\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)

\(\Rightarrow2x+3=93\)

\(\Rightarrow2x=90\)

\(\Rightarrow x=45\)

Vậy x = 45.

a,A=\(\frac{1}{2}.\left(\frac{2.2}{1.3}.\frac{3.3}{2.4}......\frac{2016.2016}{2015.2017}\right)=\frac{1}{2}.\left(\frac{2.3.4...2016}{1.2....2015}.\frac{2.3.4...2016}{3.4....2017}\right)=\frac{1}{2}.\left(\frac{2016.2}{2017}\right)=\frac{4032}{4034}=\frac{2016}{2017}\)

Hok tốt

\(\left|x\right|=\frac{1}{2}\Rightarrow x=\orbr{\begin{cases}\frac{1}{2}\\-\frac{1}{2}\end{cases}}\)

TH1:\(x=\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}-\frac{3}{2}+5=4\)

TH2:\(x=\frac{-1}{2}\)

\(\Rightarrow\frac{1}{2}+\frac{3}{2}+5=7\)

Vậy

20 tháng 1 2018

a, Ta có \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}=\frac{x-4}{2008}\)

<=> \(\frac{x-1}{2011}+\frac{x-2}{2010}-\frac{x-3}{2009}-\frac{x-4}{2008}=0\)

<=> \(\left(\frac{x-1}{2011}-1\right)+\left(\frac{x-2}{2010}-1\right)-\left(\frac{x-3}{2009}-1\right)-\left(\frac{x-4}{2008}-1\right)=0\)

<=>\(\frac{x-2012}{2011}+\frac{x-2012}{2010}-\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\) 

<=> \(\left(x-2012\right)\left(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\right)=0\)

Mà \(\frac{1}{2011}+\frac{1}{2010}-\frac{1}{2009}-\frac{1}{2008}\ne0\)

=> \(x-2012=0=>x=2012\)

20 tháng 1 2018

b, \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)

=>\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}=2\cdot\frac{49}{99}\)

=>\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(1-\frac{1}{2x+1}=\frac{98}{99}\)

=>\(\frac{2x}{2x+1}=\frac{98}{99}\)

=>2x = 98

=>x = 49

a: \(\Leftrightarrow\dfrac{x-214}{86}-1+\dfrac{x-132}{84}-2+\dfrac{x-54}{82}-3=0\)

=>x-300=0

hay x=300

11 tháng 9 2015

2/3.5+2/5.7+2/7.9+...+2/(2x+1)(2x+3)=2.15/93

1/3-1/5+1/5-1/7+...+1/2x+1-1/2x+3=10/31

1/3-1/2x+3=10/31

1/(2x+3)=1/93

2x+3=93

2x=90

x=45