Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6x-29 chia hết cho x-6
<=> 6x-36+7 chia hết cho x-6
<=> 6(x-6)+7 chia hết cho x-6
<=> 6(x-6) chia hết cho x-6; 7 chia hết cho x-6
<=> x-6 \(\in\)Ư(7)={-1,-7,1,7}
x-6 | -1 | -7 | 1 | 7 |
x | 5 | -1 | 7 | 13 |
Vậy....
Ta có :
\(6x-29⋮x-6\left(x\inℤ\right)\)
\(\Leftrightarrow6x-36+7⋮x-6\)
\(\Leftrightarrow6\left(x-6\right)+7⋮x-6\) mà \(6\left(x-6\right)⋮x-6\)
\(\Rightarrow7⋮x-6\)
\(\Rightarrow x-6\inƯ\left(7\right)\)
\(\Rightarrow x-6\in\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow x\in\left\{-1,5,7,13\right\}\)
Vậy : \(x\in\left\{-1,5,7,13\right\}\) để \(6x-29⋮x-6\)
Ta có : 6a-33\(⋮\)a-8
\(\Rightarrow\)6a-48+15\(⋮\)a-8
\(\Rightarrow\)6(a-8)+15\(⋮\)a-8
Mà 6(a-8)\(⋮\)a-8 nên 15\(⋮\)a-8
\(\Rightarrow a-8\inƯ\left(15\right)=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
+) a-8=-1\(\Rightarrow\)a=7 (thỏa mãn)
+) a-8=1\(\Rightarrow\)a=9 (thỏa mãn)
+) a-8=-3\(\Rightarrow\)a=5 (thỏa mãn)
+) a-8=3\(\Rightarrow\)a=11 (thỏa mãn)
+) a-8=-5\(\Rightarrow\)a=3 (thỏa mãn)
+) a-8=5\(\Rightarrow\)a=13 (thỏa mãn)
+) a-8=-15\(\Rightarrow\)a=-7 (thỏa mãn)
+) a-8=15\(\Rightarrow\)a=23 (thỏa mãn)
Vậy a\(\in\){-7;3;5;7;911;13;23}
ta có 6a -33 chia hết cho a-8
=>6a-33+15-15 chia hết cho a-8
=>6a-48+15 chia hết cho a-8
Mà 6(a-8) chia hết cho a-8
=>15 chia hết cho a-8 (theo tính chất chia hết của 1 tổng)
=>a-8 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
ta có bảng
a-8 1 -1 3 -3 5 -5 15 -15
a 9 7 11 5 13 3 23 -7
Vậy a thuộc {9;7;11;5;13;3;23;-7}
Trên máy không kẻ bảng được bạn tự kẻ nhé !
5a - 30 chia hết cho a - 3
=> 5a - 15 - 15 chia hết cho a - 3
=> 5.(a - 3) - 15 chia hết cho a - 3
Do 5.(a - 3) chia hết cho a - 3 => 15 chia hết cho a - 3
=> \(a-3\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=> \(a\in\left\{4;2;6;0;8;-2;18;-12\right\}\)
sao bn lại ghi là \(x\in\)là a\(\in\)mà
5a - 30 chia hết cho a - 3
=> 5a - 15 - 15 chia hết cho a - 3
=> 5.(a - 3) - 15 chia hết cho a - 3
Do 5.(a - 3) chia hết cho a - 3 => 15 chia hết cho a - 3
=> \(a-3\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=> \(a\in\left\{4;2;6;0;8;-2;18;-12\right\}\)
a)x-7 = 0
x=0+7=7
b, ( x - 3 ) . ( x^2 + 3 ) = 0
-> x -3=0 hoặc x^2+3 =0
+ Nếu x -3 =0
-> x=3
+ Nếu x^2+3 =0
-> x^2 =-3 ( loại)
Vậy x=3
Bài2
6x + 3 chia hết cho x
Ta có x chia hết cho x
-> 6x chia hết cho x
Mà 6x+3 chia hết cho x
-> (6x+3)-6x chia hết cho x
-> 3 chia hết cho x
......
Bạn tự làm
Câu b tương tự
1.
x - 7 = 0 => x = 7
( x - 3 ) ( x2 + 3 ) = 0
=> \(\orbr{\begin{cases}x-3=0\\x^2+3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=3\\x^2=-3\end{cases}}\)
Bình phương một số \(\ge\)0 => x2 \(\ne\)-3
=> x = 3
2. a) 6x + 3 chia hết cho x
=> 3 chia hết cho x
=> x thuộc Ư(3) = { -3 ; -1 ; 1 ; 3 }
b) 4x + 4 chia hết cho 2x - 1
=> 2(2x - 1) + 6 chia hết cho 2x - 1
=> 4x - 2 + 6 chia hết cho 2x - 1
=> 6 chia hết cho 2x - 1
=> 2x - 1 thuộc Ư(6) = { -6 ; -3 ; -2 ; -1 ; 1 ; 2 ; 3 ; 6 }
2x-1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -2,5 | -1 | -0,5 | 0 | 1 | 1,5 | 2 | 3,5 |
Vì x thuộc Z => x thuộc { -1 ; 0 ; 1 ; 2 }
b thuộc Z => b-8 thuộc Z
=> b-8=Ư(-13)={-13;-1;1;13}
ta có bảng
b-8 | -13 | -1 | 1 | 13 |
b | -5 | 7 | 9 | 21 |
Vậy b={-5;7;9;21}
=> -13 thuộc Ư(-13)
Ư(-13) = { +1; +13}
ta có:
b - 8| 1 | -1 | 13 | -13 |
b | 9 | 7 | 21 | -5 |
Đ/s: b thuộc {9; 7; 21; -5}
# hok tốt #
Giải:
Ta có:
6a + 9 chia hết cho a - 1
=> 6a - 6 + 6 + 9 chia hết cho a - 1
=> 6(a-1) + 15 chia hết cho a-1
Ta thấy: 6(a-1) chia hết cho a-1
=> a-1 thuộc vào Ư(15)
=> a-1 = {+1;-1;+5;-5;+3;-3;+15;-15}
Ta có bảng sau:
a-1 | 1 | -1 | 5 | -5 | 3 | -3 | 15 | -15 |
a | 2 | 0 | 6 | -4 | 4 | -2 | 16 | -14 |
nếu đúng thì kết bn vs mình nhes^_^
chúc bn hok tốt
Ta có \(2c+8⋮c-2=>2\left(c-2\right)+12⋮c-2\)
Do \(2\left(c-2\right)⋮c-2\)nên \(12⋮c-2\)
\(=>c-2\inƯ\left(12\right)=\left\{12;6;4;3;2;1;-1;-2;-3;-4;-6;-12\right\}\)
\(=>c\in\left\{14;8;6;5;4;3;1;0;-1;-2;-4;-10\right\}\)( thỏa mãn c thuộc Z )
Vậy ....
vì 2x chia hết cho x. suy ra 7 cũng chia hết cho x . x thuộc ước 7 . vậy x = 7, -7
Bạn trình bày lại nhé
tick cho mình nha!
Ta có : 6x + 66 chia hết cho x+8
=> 6x + 8 + 58 chia hết cho x+8
=>x+8 \(\in\) Ư (58)
=> x+8 \(\in\) { -58 ; -29; -2 ; -1 ; 1 ; 2 ; 29 ; 58}
=> x \(\in\) { -66; -37; -10; -7; -6; 21;50}