Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(1+\frac{x+5}{1995}+1+\frac{x+4}{1996}+1+\frac{x+3}{1997}=1+\frac{x+1995}{5}+1+\frac{x+1996}{4}+1+\frac{x+1997}{3}\)
\(=\frac{x+2000}{1995}+\frac{x+2000}{1996}+\frac{x+2000}{1997}=\frac{x+2000}{5}+\frac{x+2000}{4}+\frac{x+2000}{3}\)
\(=\left(x+2000\right)\left(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}\right)=\left(x+2000\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\) (1)
Xét \(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}\ne\frac{1}{5}+\frac{1}{4}+\frac{1}{3}vàx+2000=x+2000\) (2)
từ \(\left(1\right)\Leftrightarrow x+2000=0\) ( để (1) là đúng )
\(\Rightarrow x=2000\)
Suy ra \(\frac{x+1}{1999}+1+\frac{x+2}{1998}+1=\frac{x+3}{1997}+1+\frac{x+4}{1996}\)
Suy ra \(\frac{x+2000}{1999}+\frac{x+2000}{1998}=\frac{x+2000}{1997}+\frac{x+2000}{1996}\)
Suy ra \(\frac{x+2000}{1999}+\frac{x+2000}{1998}-\frac{x+2000}{1997}-\frac{x+2000}{1996}=0\)
Suy ra \(x+2000.\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)=0\)
Vì \(\left(\frac{1}{1999}+\frac{1}{1998}-\frac{1}{1997}-\frac{1}{1996}\right)\ne0\)
Suy ra x+2000=0
Suy ra x=-2000
Hok tốt
1.\(\frac{1996}{\left|x\right|+1997}\)có GTLN \(\Leftrightarrow\left|x\right|+1997\)có GTNN.
Mà \(\left|x\right|+1997\ne0\)
Ta thấy: \(\left|x\right|\ge0\forall x\in R\Rightarrow\left|x\right|+1997\ge1997\)
\(\Rightarrow\left|x\right|=0\)thì \(\left|x\right|+1997\)có GTNN là \(1997\)
\(\Rightarrow\)GTLN của \(\frac{1996}{\left|x\right|+1997}\)là \(\frac{1996}{1997}\)khi x=0
2.\(\frac{\left|x\right|+1996}{-1997}=\frac{-\left(\left|x\right|+1996\right)}{1997}\)
\(\Rightarrow\left|x\right|+1996\)phải có GTNN thì \(\frac{\left|x\right|+1996}{-1997}\)đạt GTLN
Mà \(\left|x\right|\ge0\forall x\in R\Rightarrow x=0\)thì \(\left|x\right|+1996\)có GTNN là \(1996\)
Vậy GTLN của \(\frac{\left|x\right|+1996}{-1997}\)là \(\frac{1996}{-1997}\)khi x=0
\(\frac{x-1}{2000}+\frac{x-3}{1998}+\frac{x-5}{1996}+\frac{x}{667}=6\)
\(\Rightarrow\frac{x-1}{2000}+\frac{x-3}{1998}+\frac{x-5}{1996}+\frac{x}{667}-6=0\)
\(\Rightarrow\left(\frac{x-1}{2000}-1\right)+\left(\frac{x-3}{1998}+1\right)+\left(\frac{x-5}{1996}-1\right)+\left(\frac{x}{667}-3\right)=0\)
\(\Rightarrow\frac{x-1-2000}{2000}+\frac{x-3-1998}{1998}+\frac{x-5-1996}{1996}+\frac{x-3.667}{667}=0\)
\(\Rightarrow\frac{x-2001}{2000}+\frac{x-2001}{1998}+\frac{x-2001}{1996}+\frac{x-2001}{667}=0\)
\(\Rightarrow\left(x-2001\right)\left(\frac{1}{2000}+\frac{1}{1998}+\frac{1}{1996}+\frac{1}{667}\right)=0\)
Ta có: \(\frac{1}{2000}+\frac{1}{1998}+\frac{1}{1996}+\frac{1}{667}\ne0\)
\(\Rightarrow x-2001=0\Rightarrow x=2001\)
a) \(x+\frac{2}{3}=\frac{4}{5}\)
\(x=\frac{4}{5}-\frac{2}{3}\)
\(x=\frac{2}{15}\)
b) \(x-\frac{2}{7}=\frac{7}{21}\)
\(x=\frac{7}{21}+\frac{2}{7}\)
\(x=\frac{13}{21}\)
c) \(x-\frac{3}{4}=\frac{-8}{11}\)
\(x=\frac{-8}{21}+\frac{3}{4}\)
\(x=\frac{31}{84}\)
d) \(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
cộng 1 vào mỗi tỉ số,ta đc:
(x+5)/1995+1+(x+4)/1996+1+(x+3)/1997+1=(x+1995)/5+1+(x+1996)/4+1+(x+1997|/3+1
=>\(\frac{x+5+1995}{1995}+\frac{x+4+1996}{1996}+\frac{x+3+1997}{1997}=\frac{x+1995+5}{5}+\frac{x+1996+4}{4}+\frac{x+1997+3}{3}\)
\(\Rightarrow\frac{x+2000}{1995}+\frac{x+2000}{1996}+\frac{x+2000}{1997}-\frac{x+2000}{5}-\frac{x+2000}{4}-\frac{x-2000}{3}=0\)
\(\Rightarrow\left(x+2000\right)\left(\frac{1}{1995}+\frac{1}{1996}+\frac{1}{1997}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)
mà bt trong ngoặc thứ 2 khác 0
=>x+2000=0
=>x=-2000