Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)\left(x+\frac{2}{3}\right)>0\)
(+) \(\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)\(\Rightarrow x>-\frac{2}{3}\)
(+) \(\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)\(\Rightarrow x< -2\)
Vậy \(x>-\frac{2}{3}\) ; \(x< -2\)
Ta thấy:\(\left|3x+\frac{1}{7}\right|\ge0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|\le0\)
\(\Rightarrow-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\le\frac{5}{3}\)
\(\Rightarrow C\le\frac{5}{3}\)
Dấu= khi \(x=-\frac{1}{7}\)
Vậy MinC=\(\frac{5}{3}\) khi \(x=-\frac{1}{7}\)
Bài 1:
Giải:
Ta có: \(\frac{x}{y}=\frac{3}{2}\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5x=7z\Rightarrow\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{15}=\frac{2y}{28}=\frac{x-2y+z}{21-28+15}=\frac{32}{8}=4\)
+) \(\frac{x}{21}=4\Rightarrow x=84\)
+) \(\frac{y}{14}=4\Rightarrow y=56\)
+) \(\frac{z}{15}=4\Rightarrow z=60\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(84;56;60\right)\)
Bài 2:
Giải:
Ta có: \(\frac{7x+5y}{3x-7y}=\frac{7z+5t}{3z-7t}\Rightarrow\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{7x+5y}{7z+5t}=\frac{3x-7y}{3z-7t}=\frac{7x}{7z}=\frac{5y}{5t}=\frac{3x}{3z}=\frac{7y}{7t}=\frac{x}{z}=\frac{y}{t}=\frac{x}{z}=\frac{y}{t}\)
\(\frac{x}{z}=\frac{y}{t}\Rightarrow\frac{x}{y}=\frac{z}{t}\)
\(\Rightarrowđpcm\)
BÀI 1 LÀ áp dụng tính chất của dãy tỉ sỗ = nhau
BT2 là cũng vậy r ss
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k\)
\(y=3k\)
\(z=5k\)
Thay \(x=2k;y=3k;z=5k\) vào \(x.y.z=810\) ta được:
\(2k.3k.5k=810\)
\(30k^3=810\)
\(k^3=27\)
\(k^3=3^3\)
\(\Rightarrow k=3\)
\(\Rightarrow x=2k=2.3=6\)
\(y=3k=3.3=9\)
\(z=5k=5.3=15\)
Vậy \(x=6;y=9;z=15\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)
\(=\left(-\frac{9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)
\(=\left(\frac{-9}{4}\right)^2\)
\(=\frac{81}{16}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\left(đpcm\right)\)
Hiệu số phần bằng nhau:
4 - 3 = 1
Tuổi của anh cách đây 5 năm là:
8 : 1 . 4 = 32 (tuổi)
Tuổi của anh hiện nay là:
32 + 5 = 37 (tuổi)
Tuổi của em hiện nay là:
37 - 8 = 29 (tuổi)
bn có thể giải theo phương thức đại lượng tỉ lệ thuận lớp 7 đc ko ?
Ta có a.(a+b+c)+b.(a+b+c)+c.(a+b+c)=1/144
=>ta sử dụng phép phân phối có a+b+c chung
=>(a+b+c)(a+b+c)=1/144
=>a+b+c=1/12
từ đó tính a,b,c lần lượt là -1/2;3/4;-1/6
cậu toàn chép sai đề bài à nếu là c.(a+b+c)=-1/72 mới tính được
hihi bài này mình học ùi nhưng ko hỉu cho a+2016 bạn về xem lại sách y
\(\frac{7}{x-1}=\frac{x+1}{8}\)
=> \(\left(x-1\right)\left(x+1\right)=56\)
=> \(x^2-1=56\)
=> \(x^2=57\)
=>\(\left[\begin{array}{nghiempt}x=\sqrt{57}\\x=-\sqrt{57}\end{array}\right.\)
thanks!