Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)
b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)
c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)
\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)
d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)
\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)
a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)
<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)
<=> \(\sqrt{x}+8=28\)
<=> \(\sqrt{x}=28-8\)
<=> \(\sqrt{x}=20\)
<=> \(\left(\sqrt{x}\right)^2=20^2\)
<=> x = 400
=> x = 400
b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)
<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)
<=> \(3\sqrt{x}+5=\sqrt{x}+12\)
<=> \(3\sqrt{x}=\sqrt{x}+12-5\)
<=> \(3\sqrt{x}=\sqrt{x}+7\)
<=> \(3\sqrt{x}-\sqrt{x}=7\)
<=> \(2\sqrt{x}=7\)
<=> \(\sqrt{x}=\frac{7}{2}\)
<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)
<=> \(x=\frac{49}{4}\)
=> \(x=\frac{49}{4}\)
c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)
<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)
<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)
<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)
<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)
<=> \(8\sqrt{x}=6\sqrt{x}+4\)
<=> \(8\sqrt{x}-6\sqrt{x}=4\)
<=> \(2\sqrt{x}=4\)
<=> \(\sqrt{x}=2\)
<=> \(\left(\sqrt{x}\right)^2=2^2\)
<=> x = 4
=> x = 4
d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)
<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)
<=>\(2\sqrt{3x}=6\sqrt{3x}\)
<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)
<=>\(-4\sqrt{3x}=0\)
<=> \(\sqrt{3x}=0\)
<=> \(\left(\sqrt{3x}\right)^2=0^2\)
<=> 3x = 0
<=> x = 0
=> x = 0
a) \(\sqrt{x-1}=5\)
\(\Leftrightarrow x-1=25\)
\(\Rightarrow x=26\)
b)\(\sqrt{\left(x-\frac{1}{3}\right)^2}=7\)
\(\Leftrightarrow x-\frac{1}{3}=7\)
\(\Rightarrow x=\frac{22}{3}\)
c)\(\sqrt{x+1}+5=3\)
làm tương tự nha bạn
P/s tham khảo nha
a) \(\sqrt{x-1}=5\Leftrightarrow\left(\sqrt{x-1}\right)^2=5^2\)
\(\Leftrightarrow\sqrt{x-1}=25\)
\(\Leftrightarrow x=25+1=26\)
b) \(\sqrt{\left(x-\frac{1}{3}^2\right)}=7\). Đơn giản hóa phép tính:
\(\sqrt{\left(x-\frac{1}{3}\right)^2}\)với \(x-\frac{1}{3}\)
\(\Rightarrow x-\frac{1}{3}=7\)
\(x=7+\frac{1}{3}\Leftrightarrow x=\frac{22}{3}\)
c) \(\sqrt{1+x}+5=3\)
\(\sqrt{1-x}=3-5\)
\(\sqrt{1-x}=-2\)
\(\Leftrightarrow1+x=4\)
\(x=4-1=3\)
Mở rộng thêm:
When \(x=3\) the original equation \(\sqrt{1+x}+5=3\) does not hold true.
We will drop \(x=3\) from the solution set. (tự dịch nha! Vì mình sử dụng chương trình để trợ giúp mình giải
a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)
\(\Leftrightarrow x+3=7x+35\)
\(\Leftrightarrow-6x=32\)
\(\Leftrightarrow x=-\frac{16}{3}\)
b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)
\(\Leftrightarrow6x-3=-6x-10\)
\(\Leftrightarrow12x=-7\)
\(\Leftrightarrow x=-\frac{7}{12}\)
c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)
\(\Leftrightarrow\left(x+1\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)
d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)
\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)
\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
Bài 1:
\(4.\left(\frac{-1}{2}\right)^2-2.\left(\frac{-1}{2}\right)^2+3.\left(\frac{-1}{2}\right)+1\)
\(=4.\frac{1}{4}-2.\frac{1}{4}+3.\left(\frac{-1}{2}\right)+1\)
\(=1-\frac{1}{2}-\frac{3}{2}+1\)
\(=0\)
Bài 2:
a) \(\frac{37-x}{x+13}=\frac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow259-39=3x+7x\)
\(\Rightarrow220=10x\)
\(\Rightarrow x=22\)
d) \(\frac{3^2.3^8}{27^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)
\(\frac{\Rightarrow3^{10}}{3^9}=3^x\)
\(\Rightarrow3=3^x\)
\(\Rightarrow x=1\)
Hok tốt nha^^
\(a,\sqrt{x}-2=1\Leftrightarrow\sqrt{x}=1+2=3\Leftrightarrow x=3^2=9\)
\(b,\sqrt{x}+3-2=0\Leftrightarrow\sqrt{x}=0-3+2\Leftrightarrow\sqrt{x}=-1\left(\text{không tồn tại }x\right)\)
\(c.\sqrt{5x-1}=2\Leftrightarrow5x-1=4\Leftrightarrow5x=1+4=5\Leftrightarrow x=1\)
\(a)\) ĐKXĐ : \(x\ge0\)
\(\sqrt{x}-2=1\)
\(\Leftrightarrow\)\(\sqrt{x}=3\)
\(\Leftrightarrow\)\(x=9\)
Vậy \(x=9\)
\(b)\) ĐKXĐ : \(x\ge0\)
\(\sqrt{x}+3-2=0\)
\(\Leftrightarrow\)\(\sqrt{x}=-1\)
Vì \(\sqrt{x}\ge0\) nên ko có x thỏa mãn đề bài
Vậy ko có x thỏa mãn đề bài
\(c)\) ĐKXĐ : \(x\ge\frac{1}{5}\)
\(\sqrt{5x-1}=2\)
\(\Leftrightarrow\)\(5x-1=4\)
\(\Leftrightarrow\)\(5x=5\)
\(\Leftrightarrow\)\(x=1\) ( thỏa mãn )
Vậy \(x=1\)
Chúc bạn học tốt ~
Bài 3: Tìm x:
a. \(\left(2x-1\right)^4=81\)
\(\Rightarrow\left(2x-1\right)^4=3^4\)
=> 2x - 1 = 3
=> 2x = 4
=> x = 2
b. \(\left(x-2\right)^2=1\)
\(\Rightarrow\) \(\left(x-2\right)^2=1^2\)
=> x - 2 = 1
=> x = 3
c. \(x^{2000}=x\)
=> x = 1
d. \(\left(4x-3\right)^3=-125\)
\(\Rightarrow\left(4x-3\right)^3=\left(-5\right)^3\)
=> 4x - 3 = -5
=> 4x = -2
=> x = \(\dfrac{-1}{2}\)
a)
<=> 7 + 9 = x^2
<=> 16 = x^2
<=> 4 = x
b)
<=> x^2 = 18 - 9
<=> x^2 = 9
<=> x = 3
a) √72 + 32 = 7 + 9 = 16 = 42 = x2
Vậy x=4
b) x2 + 9 =18
<=> x2 = 18 -9
<=> x2 = 9 = 32
Vậy x=3