K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 1 2022

Lời giải:

a. Đặt $x^2-2x=a$ thì pt trở thành:

$a^2+3a+2=0$

$\Leftrightarrow (a+1)(a+2)=0$

$\Leftrightarrow a+1=0$ hoặc $a+2=0$

$\Leftrightarrow x^2-2x+1=0$ hoặc $x^2-2x+2=0$

Nếu $x^2-2x+1=0\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1$
Nếu $x^2-2x+2=0\Leftrightarrow (x-1)^2=-1<0$ (vô lý)

Vậy pt có nghiệm duy nhất $x=1$

b.

Đặt $x^2+x=a$ thì pt trở thành:

$a(a-4)+4=0$

$\Leftrightarrow a^2-4a+4=0$

$\Leftrightarrow (a-2)^2=0$

$\Leftrightarrow a-2=0$

$\Leftrightarrow x^2+x-2=0$

$\Leftrihgtarrow (x-1)(x+2)=0$

$\Rightarrow x=1$ hoặc $x=-2$

26 tháng 8 2018

a) \(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left(x+2\right)^2=3^2\)

\(\Rightarrow x+2=3\)

\(\Rightarrow x=3-2=1\)

26 tháng 8 2018

a) ( x + 2 )2 = 9

=> ( x + 2 ) 2 = 9

=> ( x + 2 )2 = 32

=> x + 2 = + 3

=> \(\orbr{\begin{cases}x+2=-3\\x+2=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

Vậy x = -1; 5

b) ( x + 2 )2 - x2 + 4 = 0

=> ( x + 2 )2 - ( x2 - 4 ) = 0

=> ( x + 2 )2 - ( x + 2 ) ( x  - 2 ) = 0

=> ( x + 2 ) ( x + 2 -  x + 2 ) = 0

=> ( x + 2 ) . 4 = 0

=> x + 2 = 0 

=> x = - 2

Vậy x = - 2 

c)  5 ( 2x - 3 )2 - 5 ( x + 1 )2 - 15( x + 4 ) ( x - 4 )  = - 10

=> 5 ( 4x2 - 12x + 9 ) - 5 ( x2 + 2x + 1 ) - 15 ( x2 - 42 ) = - 10

=> 20x2 - 60x + 45 - 5x2 - 10x - 5 - 15x2 + 240 = -10

=> - 70x + 280 = - 10

=> - 70x = - 290

=> x = \(\frac{29}{7}\)

Vậy x = \(\frac{29}{7}\)

d)  x ( x + 5 ) ( x - 5 ) - ( x + 2 ) ( x2 - 2x + 4 ) = 3

=> x ( x2 - 25 ) - ( x3 - 8 ) = 3

=> x3 - 25x - x3 + 8 = 3

=> - 25x + 8 = 3

=> - 25x = -5

=> x = \(\frac{1}{5}\)

Vậy x = \(\frac{1}{5}\)

17 tháng 5 2019

a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-1\right)\left(x+1\right)+3x=2\)

\(\Leftrightarrow x^3+8-x\left(x^2-1\right)+3x-2=0\)

\(\Leftrightarrow x^3-x^3+x+3x+6=0\)

\(\Leftrightarrow4x+6=0\)

\(\Leftrightarrow x=\frac{-3}{2}\)

Vậy....

17 tháng 5 2019

b) \(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x^2-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x^2=25\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

Vậy....

25 tháng 6 2019

a) 2x(x-3)+5(x-3)=0

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)

24 tháng 3 2020

a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)

=> \(a^2-2a+6a-12=0\)

=> \(a\left(a-2\right)+6\left(a-2\right)=0\)

=> \(\left(a+6\right)\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)

b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .

c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)

- Đặt \(x^2-4=a\)\(x^2-10=a-6\) ta được phương trình :

\(a\left(a-6\right)=72\)

=> \(a^2-6a-72=0\)

=> \(a^2+6a-12a-72=0\)

=> \(a\left(a+6\right)-12\left(a+6\right)=0\)

=> \(\left(a+6\right)\left(a-12\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)

- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)

d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)

=> \(a^2+a-42=0\)

=> \(a^2+7a-6a-42=0\)

=> \(a\left(a+7\right)-6\left(a+7\right)=0\)

=> \(\left(a-6\right)\left(a+7\right)=0\)

=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)

2 tháng 4 2019

\(\left(x-2\right)^2+\left|x-5\right|-x^2-14=0.\)

\(\left(x^2-4x+4\right)+\left|x-5\right|-x^2-14=0.\)

\(x\text{​​}\text{​​}\text{​​}^2-4x+4+\left|x-5\right|-x^2-14=0.\)

\(x\text{​​}\text{​​}\text{​​}^2-x^2-4x+4-14+\left|x-5\right|=0.\)

\(-4x-10+\left|x-5\right|=0\)

.. đến đây xét tiếp để ra kq ạ -,-

2 tháng 4 2019

Help me plz

10 tháng 8 2020

a); b) Do tích = 0 

=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)

=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)

10 tháng 8 2020

a; *x-1=0 <=>x=1

    *2x+5=0 <=>x=-2,5

    *x2+2=0 <=> ko có x

b; tương tự a

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

NV
26 tháng 2 2020

1. \(x^2\left(x+1\right)+x+1=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x+1=0\Rightarrow x=-1\)

2. \(\left(x-2\right)\left(6x+2\right)+\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right).7x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\7x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

NV
26 tháng 2 2020

3.

\(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

4.

\(x^2-x-6=0\)

\(\Leftrightarrow x^2+2x-3x-6=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)