Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2018}-x^{18}=0\)
\(x^{18}.\left(x^{2018}-1\right)=0\)
\(=>\orbr{\begin{cases}x^{18}=0\\x^{2018}-1=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
b) 275 > 81x
<=> 315 > 34x
<=> 15 > 4x
<=> x < 15 /4
c) 1252+x > 258
<=> 53(2+x) > 516
<=> 3(2+x) > 16
<=> 6 + 3x > 16
<=> 3x > 10
<=> x > 10/3
d) 5x . 5x+1 . 5x+2 <= 100...0 ( 18 số 0 ) : 218
<=> 5x+x+1+x+2 <= 1018 : 218
<=> 53x+3 <= 518
<=> 3x+3 <= 18
<=> 3x <= 15
<=> x <= 5
( <= là bé hơn hoặc bằng )
a) \(2^x=32\)
Ta có: \(2^5=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
b) Sửa đề tí: \(9< 3^x< 81\)
\(\Rightarrow3^2< 3^x< 3^4\)
\(\Rightarrow2< x< 4\)
\(\Rightarrow x=\left\{3\right\}\)
Vậy x = 3
c) Ta có: \(25\le5^x\le125\)
\(\Rightarrow5^2\le5^x\le5^3\)
\(\Rightarrow2\le x\le3\)
\(\Rightarrow x=\left\{2;3\right\}\)
Vậy x = 2 hoặc x = 3
d) \(\left(x-2\right)^3\times5=40\)
\(\Rightarrow\left(x-2\right)^3=8\)
Mà \(8=2^3\Rightarrow\left(x-2\right)^3=2^3\)
Suy ra: x - 2 = 2
Vậy x = 4
a) \(\frac{18^4.3^2.8^3}{27^3.16^2}=\frac{\left(2.3^2\right)^4.3^2.\left(2^3\right)^3}{\left(3^3\right)^3.\left(2^4\right)^2}=\frac{2^4.2^9.3^8.3^2}{3^9.2^8}=\frac{2^{13}.3^{10}}{3^9.2^8}=3.2^5=96\)
b) \(\frac{35^5.9^3.8^5}{81^4.32^5}=\frac{35^5.\left(3^2\right)^3.\left(2^3\right)^5}{\left(3^4\right)^4.\left(2^5\right)^5}=\frac{35^5.3^6.2^{15}}{3^{16}.2^{25}}=\frac{35^5}{3^{10}.2^{10}}=\frac{35^5}{6^{10}}\)
c) \(\frac{48^5.18^2}{81^2.34^4}=\frac{\left(2^4.3\right)^5.\left(2.3^2\right)^2}{\left(3^4\right)^2.\left(2.17\right)^4}=\frac{2^{20}.3^5.2^2.3^4}{3^8.2^4.17^4}=\frac{2^{22}.3^9}{3^8.2^4.17^4}=\frac{2^{18}.3}{17^4}\)
d) \(\frac{54^7.27^3.16^2}{243^2.64^3}=\frac{\left(2.3^3\right)^7.\left(3^3\right)^3.\left(2^4\right)^2}{\left(3^5\right)^2.\left(2^6\right)^3}=\frac{2^7.3^{21}.3^9.2^8}{3^{10}.2^{18}}=\frac{2^{15}.3^{30}}{3^{10}.2^{18}}=\frac{3^{20}}{2^3}\)
a/ 25x+1.1252=6254
<=> (52)x+1.(53)2=(54)4
<=> 52x+2.56 = 516
<=> 52x+2=510
=> 2x+2=10 => x=4
b/ 9x=273.35
<=> 32x=39.35=314
=> 2x=14 => x=7
c/ 16x.85=647
<=> (24)x.(23)5=(26)7
<=> 24x.215=242
<=> 24x=227
=> 4x=27 => x=27/4
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
a.\(\hept{\begin{cases}4^8.2^{20}=2^{16}.2^{20}=2^{36}\\9^{12}.27^5.81^4=3^{24}.3^{15}.3^{12}=3^{51}\\64^3.4^5.16^2=2^{18}.2^{10}.2^8=2^{36}\end{cases}}\)
b.\(\hept{\begin{cases}25^{20}.125^4=5^{40}.5^{12}=5^{52}\\x^7x^4x^3=x^{14}\\3^6.4^6=12^6\end{cases}}\)
c.\(\hept{\begin{cases}8^4.2^3.16^2=2^{12}.2^3.2^8=2^{23}\\2^3.2^2.8^3=2^3.2^2.2^9=2^{14}\end{cases}}\)
Thiếu đk của x bạn ơi, mình xét x thuộc N* vậy
a) \(27^5>81^x\)
\(3^{15}>3^{4x}\)
=> 15 > 4x
=> a = { 1; 2; 3 }
b) \(125^{2+x}>25^8\)
\(5^{3x+6}>5^{16}\)
=> 3x + 6 > 16
=> 3x > 10
=> x > 4
c) \(x^{2018}=x^{18}\)
\(x^{2018}-x^{18}=0\)
\(x^{18}\left(x^{2000}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^{18}=0\\x^{2000}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\left\{1;-1\right\}\end{cases}}\)
Vậy x = { -1; 0; 1 }
a, \(27^5>81^x\)
\(\Rightarrow3^{15}>3^{4x}\)
\(\Rightarrow15>4x\)
\(\Rightarrow3,75>x\)
\(\Rightarrow x=0;1;2;3\)
b, \(125^{2+x}>25^8\)
\(\Rightarrow5^{3\left(2+x\right)}>5^{16}\)
\(\Rightarrow5^{6+3x}>5^{16}\)
\(\Rightarrow6+3x>16\)
\(\Rightarrow3x>10\)
\(\Rightarrow x>3,\left(3\right)\)
\(\Rightarrow x=4;5;6;...\)
c, \(x^{2018}=x^{18}\)
\(\Rightarrow x^{2018}-x^{18}=0\)
\(\Rightarrow x^{18}\left(x^{2000}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^{18}=0\\x^{2000}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^{2000}=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)