Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(\frac{11}{2}-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=3-\frac{11}{2}\)
\(-\frac{2}{3}:\left|2x+-\frac{3}{2}\right|=-\frac{5}{2}\)
\(\left|2x+-\frac{3}{2}\right|=-\frac{2}{3}:\left(-\frac{5}{2}\right)\)
\(\left|2x+-\frac{3}{2}\right|=\frac{4}{15}\)
\(\Rightarrow\left|2x+-\frac{3}{2}\right|\in\text{{}\frac{4}{15};-\frac{4}{15}\)}
Nếu, \(2x+\left(-\frac{3}{2}\right)=\frac{4}{15}\)
\(2x=\frac{53}{30}\)
\(x=\frac{53}{60}\)
Nếu, \(2x+\left(-\frac{3}{2}\right)=-\frac{4}{15}\)
\(2x=\frac{37}{30}\)
\(x=\frac{37}{60}\)
Vậy \(x\in\text{{}\frac{53}{60};\frac{37}{60}\)}
b) \(\left|\frac{2}{7}x-\frac{1}{5}\right|-\left|-x+\frac{4}{9}\right|=0\)
\(\left|\frac{2}{7}x-\frac{1}{5}\right|=\left|-x+\frac{4}{9}\right|\)
\(\Rightarrow\left|\frac{2}{7}x-\frac{1}{5}\right|\in\text{{}-x+\frac{4}{9};-\left(x+\frac{4}{9}\right)\)}
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-x+\frac{4}{9}\)
\(x=\frac{203}{405}\)
Nếu, \(\frac{2}{7}x-\frac{1}{5}=-\left(-x+\frac{4}{9}\right)\)
\(\frac{2}{7}x-\frac{1}{5}=x-\frac{4}{9}\)
\(\frac{2}{7}x-x=\frac{1}{5}-\frac{4}{9}\)
\(-\frac{5}{7}x=-\frac{11}{45}\)
\(x=\frac{77}{225}\)
Vậy \(x\in\text{{}\frac{203}{405};\frac{77}{225}\)}
a) \(\left(3-2x\right)\left(x+1\right)\ge0\)
TH1:\(\left\{{}\begin{matrix}3-2x\ge0\\x+1\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le1,5\\x\ge-1\end{matrix}\right.\)\(\Rightarrow-1\le x\le1,5\)
TH2:\(\left\{{}\begin{matrix}3-2x\le0\\x+1\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge1,5\\x\le-1\end{matrix}\right.\)(vô lý)
Vậy.............................
b) \(\left(2x-4\right)\left(x+3\right)\le0\)
TH1:\(\left\{{}\begin{matrix}2x-4\ge0\\x+3\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\) (vô lý)
TH2: \(\left\{{}\begin{matrix}2x-4\le0\\x+3\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ge-3\end{matrix}\right.\)\(\Rightarrow-3\le x\le2\)
Vậy...............................
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!
\(a,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+2}\left[1-\left(x-1\right)^2\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\1-\left(x-1\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\left(2-x\right)=0\end{cases}}}\)
=> x=1 ; x=0 ; x=2
Vậy..
Bài 1 :
b) \(\left|x-3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}x-3=-5\\x-3=5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
Vậy x thuộc {-2; 8}
c) \(\left|2x+1\right|=x-8\)
\(\Rightarrow\orbr{\begin{cases}2x+1=-x+8\\2x+1=x-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=7\\x=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-9\end{cases}}\)
Vậy x thuộc {-9; 7/3}
Câu c) tớ không chắc, thông cảm.
=))
a)\(\left(3-2x\right)\left(x+1\right)\ge0\)
TH1: \(\hept{\begin{cases}3-2x\ge0\\1+x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-1\end{cases}}}\)\(\Leftrightarrow-1\le x\le\frac{3}{2}\)
TH2: \(\hept{\begin{cases}3-2x\le0\\1+x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-1\end{cases}}}\)( vô lí)
b) \(\left(2x-4\right)\left(x+3\right)\le0\)
\(\Leftrightarrow2\left(x-2\right)\left(x+3\right)\le0\)
TH1:\(\hept{\begin{cases}x-2\le0\\x+3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le2\\x\ge-3\end{cases}\Leftrightarrow}-3\le x\le2}\)
TH2:\(\hept{\begin{cases}x-2\ge0\\x+3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge2\\x\le-3\end{cases}}}\)(vô lí)
b: \(\dfrac{2x+3}{3-x}\le0\)
\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)
=>x>3 hoặc x<=-3/2
c: \(\dfrac{x+5}{x+3}>1\)
\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)
=>2/(x+3)>0
=>x+3>0
hay x>-3
Bạn kia sai rồi
x > 0 ; y > 0 thì chưa chắc \(x\ge1;y\ge1\) được
Mình giải các bạn tham khảo nhé :
\(A=\left(x+1\right)\left(y+1\right)=x\left(y+1\right)+\left(y+1\right)=xy+x+y+1\)
\(=1+x+y+1=2+x+y\)
Ta lại có : \(x+y\ge2\sqrt{xy}=2.1=2\) ( bất đẳng thức cosi )
Dấu "=" xảy ra <=> \(x=y\)
\(\Rightarrow2+x+y\ge2+2=4\)
\(\Rightarrow A\ge4\) (Đpcm)
TH1 x-1 ≥ 0
<=> x ≥ 1
4-x ≥ 0
<=> -x≥ -4 <=> x ≤ 4
TH2 x-1<0 <=> x<1
4-x<0 <=> -x<4 <=> x>4
thiếu vậy bn ơi ,