Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK của A \(x\ne4\),ĐK của B \(\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\)
a, \(x^2-3x=0\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Với \(x=0\Rightarrow A=\frac{-5}{-4}=\frac{5}{4}\)
Với \(x=3\Rightarrow A=\frac{3-5}{3-4}=2\)
b. \(B=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x\left(x-5\right)}=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)
c. \(P=\frac{A}{B}=\frac{x-5}{x-4}.\frac{2x}{x-5}=\frac{2x}{x-4}=\frac{2x-8}{x-4}+\frac{8}{x-4}=2+\frac{8}{x-4}\)
P nguyên \(\Leftrightarrow x-4\inƯ\left(8\right)\Rightarrow x-4\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)
So sánh điều kiện ta thấy \(x\in\left\{-4;2;3;6;8;12\right\}\)thì P nguyên
Ta có: \(n^5-n+2=n\left(n^4-1\right)+2\)
\(=n\left(n^2+1\right)\left(n^2-1\right)+2\)
\(=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)
Ta có n - 1; n; n + 1 là 3 số tự nhiên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)⋮3\)
Suy ra \(\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)+2\)chia 3 dư 2.
Mà ta có: Số chính phương chia 3 dư 0 hoặc 1
Thật vậy: +) Nếu m = 3k thì \(m^2=9k^2⋮3\)(chia 3 dư 0)
+) Nếu m = 3k + 1 thì \(m^2=9k^2+6k+1\)(chia 3 dư 1)
+) Nếu m = 3k + 2 thì \(m^2=9k^2+12k+4\)(chia 3 dư 1)
Vậy không có số nguyên dương n để n5 - n + 2 là số chính phương.
a) 3x3-2x2+2 chia x+1= 3x2-5x+5 dư -3 b) -3 chia hết x+1 vậy chon x =2
1)
a) \(-7x\left(3x-2\right)\)
\(=-21x^2+14x\)
b) \(87^2+26.87+13^2\)
\(=87^2+2.87.13+13^2\)
\(=\left(87+13\right)^2\)
\(=100^2\)
\(=10000\)
2)
a) \(x^2-25\)
\(=x^2-5^2\)
\(=\left(x-5\right)\left(x+5\right)\)
b) \(3x\left(x+5\right)-2x-10=0\)
\(\Leftrightarrow3x\left(x+5\right)-\left(2x-10\right)=0\)
\(\Leftrightarrow3x\left(x+5\right)-2\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy..........
3)
a) \(A:B=\left(3x^3-2x^2+2\right):\left(x+1\right)\)
Vậy \(\left(3x^3-2x^2+2\right):\left(x+1\right)=\left(3x^2-5x-5\right)+7\)
b)
Để \(A⋮B\Rightarrow7⋮\left(x+1\right)\)
\(\Rightarrow\left(x+1\right)\in U\left(7\right)=\left\{-1;1-7;7\right\}\)
Vì x là số nguyên nên x=0 ; x=6 thì \(A⋮B\)
Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2
<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0
<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0
<=> x4 - x3 - x2 - 5x - 2 = 0
?
a: \(A=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+x+1}{x+1}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{2x+1}{x-1}\cdot\dfrac{x+1}{2x+1}=\dfrac{x+1}{x-1}\)
b: Thay x=1/2 vào A, ta được:
\(A=\dfrac{\dfrac{1}{2}+1}{\dfrac{1}{2}-1}=\dfrac{3}{2}:\dfrac{-1}{2}=-3\)
c: Để A là số nguyên thì \(x-1+2⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3\right\}\)
Đặt \(n^2-n+2=a^2\left(a\in N\right)\)
\(\Rightarrow4n^2-4n+8=\left(2a\right)^2\)
\(\Rightarrow\left(2n-1\right)^2+7=\left(2a\right)^2\)
\(\Rightarrow7=\left(2a-2n+1\right)\left(2a+2n-1\right)\)
Vì \(2a+2n-1>2a-2n+1;2a+2n-1>0\) (vì n thuộc N*)
\(\Rightarrow\hept{\begin{cases}2a+2n-1=7\\2a-2n+1=1\end{cases}\Rightarrow4n-2=6\Rightarrow}n=2\)
Vậy n=2 thì ...
\(x^2\left(x-3\right)+12-4x=0\)
\(\Leftrightarrow x^2\left(x-3\right)+4\left(3-x\right)=0\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=3\end{cases}}}\)
\(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2-x=0\\x-5=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
Ta có: \(x^2-2x-14=y^2\) (y nguyên)
\(\Leftrightarrow\left(x-1\right)^2-15=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=15\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=15\)
Mà x-y-1< x+y-1 với mọi x,y
Ta sẽ có các Trường hợp
....