Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, => x^3 < 0 ; x-3 > 0 hoặc x^3 > 0 ; x-3 < 0
=> 0 < x < 3
b, => x^4.(2x-8) < 0
=> x^4.(x-4) < 0
Vì x^4 >= 0
=> x-4 < 0
=> x < 4
c, Vì x-1 < x+12
=> x-1 < 0 ; x+12 >0
=> -12 < x < 1
d, => x-12 > 0 ; x-1 > 0 hoặc x-12 < 0 ; x-1 < 0
=> x >12 hoặc x < 1
Tk mk nha
a) \(\frac{3}{4}x-\frac{1}{4}=2\left(x-3\right)+\frac{1}{4}x\)
\(\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\frac{3}{4}x-2x-\frac{1}{4}x=\frac{1}{4}-6\)
\(x\left(\frac{3}{4}-2-\frac{1}{4}\right)=-\frac{23}{4}\)
\(-\frac{3}{2}x=-\frac{23}{4}\)
\(x=-\frac{23}{4}\div\left(-\frac{3}{2}\right)\)
\(x=\frac{23}{6}\)
a) \(\left(x^2+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-1\\x^2=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\varnothing\\x=\pm2\end{cases}}}\)
Vậy x=\(\pm2\)
b) \(\left(x^3-27\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^3-27=0\\x^3+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^3=27\\x^3=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy x=3; x=-2
d) \(|3x+8|-|x-4|=0\)
\(\Leftrightarrow|3x+8|=|x-4|\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=x-4\\-3x-8=x-4\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=-12\\-4x=4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-6\\x=-1\end{cases}}}\)
Vậy x=-6; x=-1
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)
a)
Để \(\left(3x-1\right).\left(-\frac{1}{2}x+5\right)=0\)=> 3x-1=0 hoặc \(-\frac{1}{2}x+5=0\)
=> x= \(\frac{1}{3}\) hoăc \(x=10\)
b)
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=5\) => \(\frac{1}{3}:\left(2x-1\right)=5-\frac{1}{4}=\frac{19}{4}=>2x-1=\frac{1}{3}:\frac{19}{4}=\frac{4}{57}=>x=\frac{61}{114}\)
c) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0=>\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)\(=>2x+\frac{3}{5}\in\left\{\pm\frac{3}{5}\right\}=>2x\in\left\{0;\frac{-6}{5}\right\}=>x\in\left\{0;\frac{-3}{5}\right\}\)
d) Xem lại đề
a) để (3x-1).(\(-\dfrac{1}{2}x+5\))=0
=> 3x-1 hoặc \(-\dfrac{1}{2}x+5\) =0
TH1 : 3x-1=0
3x = 0+1=1
x = 1:3 = \(\dfrac{1}{3}\)
TH2 : \(-\dfrac{1}{2}x+5\)= 0
\(-\dfrac{1}{2}x\)= 0 -5 = -5
x= -5 : \(-\dfrac{1}{2}\)
x= 10
a, \(2n+5⋮n-1\)
\(2\left(n-1\right)+7⋮n-1\)
\(7⋮n-1\)hay \(n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
n - 1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
b, Công thức tổng quát : \(A\left(x\right).B\left(x\right)=0\Rightarrow\orbr{\begin{cases}A\left(x\right)=0\\B\left(x\right)=0\end{cases}}\)
\(\left(2n+3\right)\left(n-4\right)=0\Leftrightarrow\orbr{\begin{cases}n=-\frac{3}{2}\\n=4\end{cases}}\)
c, \(\left|x-3\right|< 3\Leftrightarrow-3< x-3< 3\)
\(\Leftrightarrow-3+3< x< 3+3\Leftrightarrow0< x< 6\)
Vậy \(x\in\left\{1;2;3;4;5;\right\}\)
\(a,\left(-5\right).\left|x\right|=-75\)
\(\left|x\right|=\frac{-75}{-5}=15\)
\(\Rightarrow\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
Vậy....
\(b,\left(-6\right)^3.x^2=-1944\)
\(-216.x^2=-1944\)
\(x^2=9\)
\(\Rightarrow x=\pm3\)
Vậy....
\(d,\left|9-x\right|=-7+64\)
\(\left|9-x\right|=57\)
\(\Rightarrow\orbr{\begin{cases}9-x=57\\9-x=-57\end{cases}\Rightarrow\orbr{\begin{cases}x=-48\\x=66\end{cases}}}\)
Vậy...
\(e,\left|x+101\right|-\left(-16\right)=\left(-43\right).\left(-5\right)\)
\(\left|x+101\right|+16=215\)
\(\left|x+101\right|=199\)
\(\Rightarrow\orbr{\begin{cases}x+101=199\\x+101=-199\end{cases}\Rightarrow\orbr{\begin{cases}x=98\\x=-300\end{cases}}}\)
Vậy..
hok tốt!!
a,\(\left(-5\right).\left|x\right|=-75\)
\(=>\left|x\right|=-75:\left(-5\right)=15\)
\(=>\orbr{\begin{cases}x=15\\x=-15\end{cases}}\)
b,\(\left(-6\right)^3.x^2=-1944\)
\(=>\frac{1944}{216}=x^2\)
\(=>x=\sqrt{\frac{1944}{216}}=3\)
\(\left(2x-4\right)\left(3x+1\right)< 0\)
=> TH1: \(\begin{matrix}2x-4< 0\\3x+1>0\end{matrix}\)\(\Leftrightarrow\left\{{}\begin{matrix}2x< 4\\3x>-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x>-\dfrac{1}{3}\end{matrix}\right.\) (tm)
TH2: \(\begin{matrix}2x-4>0\\3x+1< 0\end{matrix}\)\(\Leftrightarrow\left\{{}\begin{matrix}2x>4\\3x< -1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< -\dfrac{1}{3}\end{matrix}\right.\) (vô lí)
=> \(2>x>-\dfrac{1}{3}\)
x∈(-1/3, 2)