Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1/
a) ta có: \(A=\frac{15}{x-1}\)
Để A là phân số \(\Rightarrow x-1\ne0\)
\(\Rightarrow x\ne1\)
b) Nếu x = 7
\(\Rightarrow A=\frac{15}{7-1}\)
\(\Rightarrow A=\frac{15}{6}\)
Nếu x = -3
\(\Rightarrow A=\frac{15}{-3-1}\)
\(\Rightarrow A=\frac{15}{-4}\)
Nếu x = 4
\(\Rightarrow A=\frac{15}{4-1}\)
\(\Rightarrow A=\frac{15}{3}=5\)
c) Ta có: \(B=5\)
\(\Leftrightarrow A=\frac{15}{x-1}=5\)
\(\Leftrightarrow x-1=3\)
\(\Leftrightarrow x=4\)
Bài 2/
a) \(\frac{x}{3}=\frac{2}{6}\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\)
b) \(-\frac{x}{14}=\frac{10}{-7}\)
\(\Leftrightarrow7x=140\)
\(\Leftrightarrow x=20\)
hok tốt!!
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
\(\text{b) Để }\frac{x-25}{x+4}\inℤ\text{ thì }x-25⋮x+4\)
\(\Leftrightarrow x+4-29⋮x+4\)
\(\text{Vì }x+4⋮x+4\Leftrightarrow29⋮x+4\)
\(\Leftrightarrow x+4\inƯ\left(29\right)\)
\(\Leftrightarrow x+4\in\left\{\pm1;\pm29\right\}\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=\pm1\\x+4=\pm29\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3;-5\\x=25;-33\end{cases}}\)
\(\Leftrightarrow x\in\left\{-3;-5;25;-33\right\}\)
a) x \(\in\)B3-2
b)\(\left(x-1\right)\in U_{\left(5\right)}=\left\{-5,-1,1,5\right\}\)=> x\(\in\left\{-4,0,2,6\right\}\)
c) \(=1-\frac{3}{x-4}nguyen\Leftrightarrow\left(x-4\right)\in U_3=\left\{-3,-1,1,3\right\}\)
=>x\(\in\left\{1,3,5,7\right\}\)
a)Để A nguyên thì x+2 chia hết cho 3 => x+2 thuộc B(3)={0;3;6;9;...} => x{-2;1;4;7;...}
b) Để B nguyên thì x-1 thuộc Ư(5)={1;-1;5;-5}
Th1 x-1=1 => x=2
Th2 x-1=-1 => x =0
Th3 x-1=5 => x=6
Th4 x-1=-5 => x= -4
Vậy x thuộc {2;0;6;-4}
c)
\(C=\frac{x-7}{x-4}=\frac{x-4-3}{x-4}=\frac{x-4}{x-4}-\)\(\frac{3}{x-4}\)\(=1-\frac{3}{x-4}\)
Vì 1 thuộc Z nên để C thuộc Z thì 3/x-4 thuộc Z
=> x-4 thuộc Ước của 3={1;-1;3;-3}
Th1 x-4=1 => x=5
Th2 x-4=-1 => x=3
Th3 x-4=3 => x=7
Th4 x-4=-3 => x=1
Vậy x thuộc {5;3;7;1}
Ta có:
Điều kiện \(x\in Z;x\ne-1\)
\(A=\dfrac{x+5}{x+1}=\dfrac{x+1+4}{x+1}=1+\dfrac{4}{x+1}\)
Ta có A nguyên \(\Leftrightarrow\dfrac{4}{x+1}\) nguyên \(\Leftrightarrow x+1\) thuộc ước của 4 là: \(\pm1;\pm2;\pm3;\pm4\)
Ta có: \(x+1=1\Leftrightarrow x=0\) ( thỏa mãn điều kiện )
x + 1 = -1 <=> x = -2 ( thỏa mãn điều kiện )
x + 1 = 2 => x = 1 ( thỏa mãn điều kiện )
x + 1 = 2 => x = -3 ( thỏa mãn điều kiện )
x + 1 = 4 => x = 3 ( thỏa mãn điều kiện )
x + 1 = -4 => x = -5 ( thỏa mãn điều kiện )
Vậy \(A\in\left\{0;-2;1;-3;3;-5\right\}\)