Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\sqrt{3x-5}\) có nghĩa thì
3x - 5 \(\ge\) 0 <=> 3x \(\ge\) 5 <=> x \(\ge\) \(\dfrac{5}{3}\)
b) Để \(\sqrt{\dfrac{-3}{4-5x}}\) có nghĩa thì
\(\dfrac{-3}{4-5x}\ge0\)
Do -3 < 0 nên \(\dfrac{-3}{4-5x}< 0\)
Khi và chỉ khi 4 - 5x < 0 <=> x > \(\dfrac{4}{5}\)
c) Để \(\sqrt{x^2-5x+4}\) = \(\sqrt{\left(x^2-x\right)-\left(4x-4\right)}=\sqrt{x\left(x-1\right)-4\left(x-1\right)}=\sqrt{\left(x-1\right)\left(x-4\right)}\) có nghĩa thì
\(\left(x-1\right)\left(x-4\right)\ge0\)
Ta có bảng xét dấu :
x (x-1) (x-4) (x-1)(x-4) 1 4 0 0 0 0 - + + - - + + - +
=> x \(\le1\) Hoặc x \(\ge4\)
e) Để \(\sqrt{2x-3}\) có nghĩa thì \(2x-3\ge0< =>2x\ge3\Leftrightarrow x\ge\dfrac{3}{2}\)
a) Vì biểu thức \(\sqrt{\dfrac{-5}{x^2+6}}\)có -5<0 nên làm cho cả phân số âm
Từ đó suy ra căn thức vô nghiệm
Vậy không có giá trị nào của x để biểu thức trên xác định
b) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)
Để biểu thức trên xác định thì chia ra 4 TH (vì để xác định thì cả x-1 và x-3 cùng dương hoặc cùng âm)
\(\left[\begin {array} {} \begin{cases} x-1\geq0\\ x-3\geq0 \end{cases} \Leftrightarrow \begin{cases} x\geq1\\ x\geq3 \end{cases} \Rightarrow x\geq3 \\ \begin{cases} x-1\leq0\\ x-3\leq0 \end{cases} \Leftrightarrow \begin{cases} x\leq1\\ x\leq3 \end{cases} \Rightarrow x\leq1 \end{array} \right.\)
c) \(\sqrt{x^2-4}\) \(\Leftrightarrow\)\(\sqrt{\left(x-2\right)\left(x+2\right)}\)
Rồi làm như câu b
d) \(\sqrt{\dfrac{2-x}{x+3}}\)
Để biểu thức trên xác định thì
\(\begin{cases}2-x\ge0\\x+3>0\end{cases}\Leftrightarrow\begin{cases}x\ge2\\x>-3\end{cases}\) \(\Rightarrow\) \(x\ge2\) hoặc \(x>-3\)
e) Ở các biểu thức sau này nếu chỉ có căn thức có ẩn và + (hoặc trừ) với 1 số thì chỉ cần biến đổi cái có ẩn còn cái số thì kệ xác nó đi )
\(\sqrt{x^2-3x}\Leftrightarrow\sqrt{x\left(x-3\right)}\)
Để biểu thức trên xác định thì \(x\ge0\) và \(x-3\ge0\Leftrightarrow x\ge3\)
Bữa sau mình làm tiếp
a) Để \(\sqrt{3x-7}\) có nghĩa \(\Leftrightarrow\) 3x - 7 \(\ge0\)
\(\Leftrightarrow x\ge\dfrac{7}{3}\)
b) Để \(\sqrt{2-5x}\) xđ <=> 5x \(\le2\)
<=> x \(\le\dfrac{2}{5}\)
c) Để \(\sqrt{\dfrac{-3}{x-5}}xđ\Leftrightarrow x-5< 0\)
<=> x < 5
d) Để \(\sqrt{5x^2-x-4}\) xđ <=> 5x2 - x - 4 \(\ge0\)
<=> \(\left(5x+4\right)\left(x-1\right)\ge0\)
Xét bảng:
x | -4 | 1 |
5x + 4 | - 0 + | + |
x - 1 | - - | 0 + |
(5x+4)(x-1) | + 0 - | 0 + |
Vây ĐKXĐ: -4 \(\le x\le1\)
(bảng xét dấu bị lệch...@@)
e) Để \(\sqrt{9-x^2}\) xđ <=> \(9-x^2\ge0\)
<=> x \(\le\pm3\)
f) Để \(\sqrt{x^2-1}xđ\) <=> x2 - 1 \(\ge0\)
<=> x \(\ge\pm1\)
a: ĐKXD: 3x-1>=0
hay x>=1/3
b: ĐKXĐ: x2-2>=0
hay \(\left[{}\begin{matrix}x>=\sqrt{2}\\x< =-\sqrt{2}\end{matrix}\right.\)
d: ĐKXĐ: 2x-15>0
hay x>15/2
e: ĐKXĐ: (x-1)(x-3)>=0
=>x>=3 hoặc x<=1
a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)
1)
a) \(6=\sqrt{36}< \sqrt{40}\)
b) \(3=\sqrt{9}< \sqrt{10}\)
c) \(2\sqrt{3}< 2\sqrt{4}=4\)
d) \(3\sqrt{2}=\sqrt{18}< \sqrt{36}=6\)
e) \(7=\sqrt{49}< \sqrt{50}\)
2)
a) \(x\ge0\)
b) \(-2x+1\ge0\Leftrightarrow-2x\ge-1\Leftrightarrow x\le\dfrac{1}{2}\)
c) \(5-a\ge0\Leftrightarrow a\le5\)
d) \(2x-3>0\Leftrightarrow2x>3\Leftrightarrow x>\dfrac{3}{2}\)
e) \(-3< x< 1\)
f) \(-3x\ge-4\Leftrightarrow x\le\dfrac{4}{3}\)
g) \(x^2-2x-3\ge0\Leftrightarrow\left(x+1\right)\left(x-3\right)\ge0\Leftrightarrow-1\le x\le3\)
cai nay hinh nhu la co trong nang cao hat trien lo 8 thi phai cho
1 )\(\sqrt{x+1}\) có nghĩa <=> x+1 >= 0 <=> x>=-1
2) \(\sqrt{-5x+7}\) có nghĩa <=> -5x +7 >= 0 <=> -5x>=-7 <=>x=<7/5
3) \(^{\sqrt{x}^2}\) có nghĩa <=> \(^{x^{ }}\) >= 0
4) -2 + x có nghĩa <=> x >=2
5) \(\sqrt{x^2-5}\) có nghĩa <=> x>= \(\sqrt{5}\)
a/ đkxđ: \(x+3\ge0\Leftrightarrow x\ge-3\)
b/ \(\left\{{}\begin{matrix}4x-1\ge0\\x\ne\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\x\ne\dfrac{1}{2}\end{matrix}\right.\)
c/ \(2-x^2>0\Leftrightarrow x^2< 2\Leftrightarrow-\sqrt{2}< x< \sqrt{2}\)
d/ \(6-x-x^2>0\Leftrightarrow\left(x+3\right)\left(2-x\right)>0\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\Leftrightarrow-3< x< 2\)
a)\(\sqrt{-5x}\)có nghĩa khi -5x>=0 hay x<=0
b)\(\sqrt{4-x}\) có nghĩa khi 4-x>=0 hay x<=4
c)\(\sqrt{3x+7}\) có nghĩa khi 3x+7.=0 hay x>=-7/3
d)\(\dfrac{2}{x^2}\) có nghĩa khi 2/x^2>=0hay x>=\(\sqrt{2}\)