Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, điều kiện xác định là \(x\ne1;x\ne-1\)
\(\frac{3x+3}{x^2-1}\)
\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x-1}\)
b, để \(\frac{3x+3}{x^2-1}=-2\Rightarrow\frac{3}{x-1}=-2\)
\(\Rightarrow-2x+2=3\)
\(\Rightarrow-2x=1\)
\(\Rightarrow x=-\frac{1}{2}\)
a. ĐKXĐ: x2 - 1\(\ne\)0 (=) x \(\ne\)\(\pm\)1
b. \(\frac{3x+3}{x^2-1}\)
\(=\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{3}{x+1}\)với x \(\pm\)1
c. \(\frac{3}{x+1}=-2\)
\(\Rightarrow\)\(\left(x+1\right).\left(-2\right)=3\)
\(-2x-2=3\)
\(-2x=5\)
\(x=-\frac{5}{2}\)(t/m đk)
a)Đk:\(2x^2-2\ne0\Rightarrow2x^2\ne2\Rightarrow x^2\ne1\Rightarrow x\ne\pm1\)
b)ko rút gọn dc sai đề
\(A=\frac{x+6}{x-2}\)ĐKXĐ : \(x\ne2\)
\(=\frac{x-2+8}{x-2}=\frac{8}{x-2}\)
Suy ra : \(x-2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
x - 2 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
x | 3 (tm) | 1 (tm) | 4 (tm) | 0 (tm) | 6 (tm) | -2 (tm) | 10 (tm) | -6 (tm) |
\(\dfrac{A}{x-3}=\dfrac{y-x}{3-x}\)
\(\Rightarrow A=\dfrac{\left(x-3\right)\left(y-x\right)}{3-x}\)
\(\Rightarrow A=\dfrac{-\left(3-x\right)\left(y-x\right)}{3-x}\)
\(\Rightarrow A=x-y\)
_____
\(\dfrac{5x}{x+1}=\dfrac{Ax\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}\)
\(\Rightarrow A=\dfrac{5x\left(x+1\right)\left(1-x\right)}{x\left(x+1\right)}\)
\(\Rightarrow A=5\left(1-x\right)\)
\(\Rightarrow A=5-5x\)
____
\(\dfrac{4x^2-5x+1}{A}=\dfrac{4x-1}{x+3}\)
\(\Rightarrow\dfrac{\left(4x-1\right)\left(x-1\right)}{A}=\dfrac{4x-1}{x+3}\)
\(\Rightarrow A=\dfrac{\left(4x-1\right)\left(x-1\right)\left(x+3\right)}{4x-1}\)
\(\Rightarrow A=\left(x-1\right)\left(x+3\right)\)
\(\Rightarrow A=x^2+2x-3\)
Để phân thức (9x2-16)/(3x2-4x) được xác định =>3x2-4x khác 0
=>3x(x-4/3) khác 0
=>x khác 0,4/3
\(P=\frac{m^2-10m+25}{m^2-5m}\) a) \(ĐKXĐ:m\ne0;m\ne5\)
\(P=\frac{\left(m-5\right)^2}{m\left(m-5\right)}\)
\(P=\frac{m-5}{m}\)
khi \(P=-1\)\(\Leftrightarrow\frac{m-5}{m}=-1\)
\(\Rightarrow m-5=-m\)
\(\Rightarrow m+m=5\)
\(\Rightarrow2m=5\)
\(\Rightarrow m=\frac{5}{2}\)
vậy \(m=\frac{5}{2}\)khi \(P=-1\)
xác định khi:
x(2 – 3x) ≠ 0 ⇔
Vậy phân thức 5 2 x - 3 x 2 xác định với x ≠ 0 và x ≠ 2/3
1) \(\frac{3}{x^2-4y^2}\)
\(=\frac{3}{\left(x-2y\right)\left(x+2y\right)}\)
Phân thức xác định khi \(\left(x-2y\right)\left(x+2y\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x-2y\ne0\\x+2y\ne0\end{cases}}\Rightarrow x\ne\pm2y\)
2) \(\frac{2x}{8x^3+12x^2+6x+1}\)
\(=\frac{2x}{\left(2x+1\right)^3}\)
Phân thức xác định khi \(\left(2x+1\right)^3\ne0\)
\(\Rightarrow2x+1\ne0\)
\(\Rightarrow x\ne-\frac{1}{2}\)
3) \(\frac{5}{2x-3x^2}\)
\(=\frac{5}{x\left(2-3x\right)}\)
Phân thức xác định khi : \(x\left(2-3x\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}x\ne0\\2-3x\ne0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{2}{3}\end{cases}}\)
Answer:
Để cho phân thức F được xác định thì
\(x^3-8\ne0\)
\(\Leftrightarrow x^3\ne8\)
\(\Leftrightarrow x\ne2\)