Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ĐKXĐ: 6-3x>=0 và x<>3
=>x<=2
2: ĐKXĐ: 3-2x>0
=>2x<3
hay x<3/2
3: ĐKXĐ: x>=0
1) \(A=3\sqrt{\dfrac{1}{3}}-\dfrac{5}{2}\sqrt{12}-\sqrt{48}\)
\(=3\cdot\dfrac{\sqrt{1}}{\sqrt{3}}-\dfrac{5\sqrt{12}}{2}-\sqrt{4^2\cdot3}\)
\(=\dfrac{3\cdot1}{\sqrt{3}}-\dfrac{5\cdot2\sqrt{3}}{2}-4\sqrt{3}\)
\(=\sqrt{3}-5\sqrt{3}-4\sqrt{3}\)
\(=-8\sqrt{3}\)
2) \(A=\sqrt{12-4x}\) có nghĩa khi:
\(12-4x\ge0\)
\(\Leftrightarrow4x\le12\)
\(\Leftrightarrow x\le\dfrac{12}{4}\)
\(\Leftrightarrow x\le3\)
3) \(\dfrac{2x-2\sqrt{x}}{x-1}\)
\(=\dfrac{2\sqrt{x}\cdot\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}\right)^2-1^2}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{2\sqrt{\text{x}}}{\sqrt{x}+1}\)
Để biểu thức có nghĩa :
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+2}\ge0\\\sqrt{4-x}>0\\x^2-9\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x< 4\\x\ne\pm3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2\le x< 4\\x\ne3\end{matrix}\right.\)
a/ \(x^2+4x-5>0\Rightarrow\left[{}\begin{matrix}x>1\\x< -5\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}2x-1\ge0\\x-\sqrt{2x-1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\\left\{{}\begin{matrix}x>0\\x^2>2x-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}x^2-3\ge0\\1-\sqrt{x^2-3}\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}\ge0\\-2x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>0\\x\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
e/ \(\left\{{}\begin{matrix}3x-1\ge0\\5x-3\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\ge\dfrac{3}{5}\end{matrix}\right.\) \(\Rightarrow x\ge\dfrac{3}{5}\)
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
a) \(\dfrac{1}{2-\sqrt{x}}\)có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
vậy......
b) \(\dfrac{3}{\sqrt{x^2}-1}\)có nghĩa\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1\ge0\\x^2-1\ne0\end{matrix}\right.\Leftrightarrow x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\left|x\right|>1\Leftrightarrow-1< x< 1\)
vậy....
c) \(\sqrt{2x^2+3}\)
vì \(x^2\ge0\forall x\Rightarrow2x^2\ge0\Rightarrow2x^2+3>0\)
vậy căn thức trên có nghĩa với mọi x
d)\(\dfrac{5}{\sqrt{-x^2-2}}\)có nghĩa
\(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\)( không xảy ra)
vậy không có giá trị nào của x để căn thức trên có nghĩa
e) \(\sqrt{x^2+3}\)
làm tương tự với phần c
a) đkxđ : \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
\(\Leftrightarrow0\le x\ne4\)
vậy......
b) đkxđ \(\left\{{}\begin{matrix}x^2-1\ge0\\\sqrt{x^2-1}\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ne1\end{matrix}\right.\)
\(\Leftrightarrow x>1\)
vậy...........
c) đkxđ :\(2x^2+3\ge0\)
vì \(\left\{{}\begin{matrix}2x^2\ge0\\3>0\end{matrix}\right.\)
nên : \(2x^2+3\ge0\)
vậy biểu thức trên có nghĩa vs mọi x
e) tg tự như c
1) Để biểu thức \(\sqrt{-2x}\) có nghĩa thì \(-2x\ge0\Leftrightarrow x\le0\)
2) Để biểu thức \(\sqrt{15x}\) có nghĩa thì \(15x\ge0\Leftrightarrow x\ge0\)
3) Để biểu thức \(\sqrt{2x+1}\) có nghĩa thì \(2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge\dfrac{-1}{2}\)
4) Để biểu thức \(\sqrt{3-6x}\) có nghĩa thì \(3-6x\ge0\Leftrightarrow6x\le3\Leftrightarrow x\le\dfrac{1}{2}\)
5) Để biểu thức \(\dfrac{1}{2-\sqrt{x}}\) có nghĩa thì \(\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}\ne0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
6) Để biểu thức \(\dfrac{3}{\sqrt{x^2-1}}\) có nghĩa thì \(x^2-1>0\Leftrightarrow x^2>1\Leftrightarrow\)\(\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
7) Ta có \(x^2\ge0\Leftrightarrow2x^2\ge0\Leftrightarrow2x^2+3\ge3>0\)
Vậy với mọi x thì biểu thức 2x2+3 luôn được xác định
8) Ta có \(-x^2\le0\Leftrightarrow-x^2-5\le-5< 0\)
Vậy với mọi x thì biểu thức \(\dfrac{5}{\sqrt{-x^2-2}}\) sẽ không xác định
\(\dfrac{x-2\sqrt{x+5}}{\sqrt{2x^2+1}}\) có nghĩa khi
\(\left\{{}\begin{matrix}x+5\ge0\\2x^2+1>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\2x^2+1>0\forall x\in R\end{matrix}\right.\\ \Rightarrow x\ge-5\)