K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2019

a) Để biểu thức trên có nghĩa thì:

1-4x\(\ge\)0<=>x\(\le\)\(\frac{1}{4}\)

b) Để biểu thức trên có nghĩa thì:

\(\hept{\begin{cases}2x+1\ge0\\3-4x\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge\frac{-1}{2}\\x\ne\frac{3}{4}\end{cases}}\)

c) Để biểu thức trên có nghĩa thì:

2x-2\(\ne\)0 <=>x\(\ne\)1

d) Để biểu thức trên có nghĩa thì:

\(\hept{\begin{cases}4x+2\ne0\\1+3x\ge0\end{cases}}\)<=>\(\hept{\begin{cases}x\ne\frac{-1}{2}\\x\ge\frac{-1}{3}\end{cases}}\)<=>x\(\ge\)\(\frac{-1}{3}\)

14 tháng 6 2019

a, Biểu thức \(2-\sqrt{1-4x}\) có nghĩa : \(1-4x\ge0\Rightarrow x\le\frac{1}{4}\)

\(b,\sqrt{2x^2+1}+\frac{2}{3-4x}\)

\(\Rightarrow\hept{\begin{cases}2x^2+1>0\\3-4x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}2x^2>-1\\4x\ne3\end{cases}}\Rightarrow\hept{\begin{cases}x^2>-\frac{1}{2}\\x\ne\frac{3}{4}\end{cases}}\Rightarrow x\ne\frac{3}{4}\)

\(c,\sqrt{\frac{-3}{2x-2}}\) \(\Rightarrow\hept{\begin{cases}\frac{-3}{2x-2}\ge0\\2x-2\ne0\end{cases}}\Rightarrow2x-2< 0\Rightarrow x< 1\)

d, TT

13 tháng 6 2019

a, Để biểu thức trên có nghĩa :

\(1-4x\ge0\Rightarrow x\le\frac{1}{4}\)

b, Để biểu thức trên có nghĩa :

\(3-4x\ne0\)           Vì \((2x^2+1)>0,\forall x\inℝ\)

\(\Leftrightarrow x\ne\frac{3}{4}\)

c, Để biểu thức trên có nghĩa :

\(\hept{\begin{cases}\frac{-3}{2x-2}\ge0\\2x-2\ne0\end{cases}}\Rightarrow2x-2< 0\Rightarrow x< 1\)

d, Tương tự

12 tháng 6 2019

\(a,\)\(2-\sqrt{1-4x}\)

\(đkxđ\Leftrightarrow\sqrt{1-4x}\ge0\)

\(\Rightarrow1-4x\ge0\)\(\Rightarrow x\le\frac{1}{4}\)

\(b,\)\(\sqrt{2x+1}+\frac{2}{3-4x}\)

\(đkxđ:\orbr{\begin{cases}2x+1\ge0\\3-4x\ne0\end{cases}\Rightarrow\orbr{\begin{cases}x\ge-\frac{1}{2}\\x\ne\frac{3}{4}\end{cases}}}\)

12 tháng 6 2019

\(c,\)\(\sqrt{\frac{-3}{2x-2}}\)

\(đkxđ:\hept{\begin{cases}\frac{-3}{2\left(x-1\right)}\ge0\\x\ne1\end{cases}}\)

\(\frac{-3}{2\left(x-1\right)}>0\Leftrightarrow2\left(x-1\right)>0\)

\(\Rightarrow x-1>0\Rightarrow x>1\)

\(d,\)\(\frac{1}{4x+2}+\sqrt{1+3x}\)

\(đkxđ:\hept{\begin{cases}2\left(x+1\right)\ne0\\1+3x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x+1\ne0\\3x\ge-1\end{cases}\Rightarrow}\hept{\begin{cases}x\ne-1\\x\ge\frac{-1}{3}\end{cases}}}\)

À câu b sửa cho mình ngoặc vuông thành ngoặc móc giùm mình nha. Mình nhầm xíu :>

12 tháng 6 2019

a/ \(1-4x\ge0\Leftrightarrow x\le\frac{1}{4}\)

b/ \(3-4x\ne0\Leftrightarrow x\ne\frac{3}{4}\)

c/\(2x-2< 0\Leftrightarrow x< 1\)

d/ \(\left\{{}\begin{matrix}4x+2\ne0\\1+3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{-1}{2}\\x\ge\frac{-1}{3}\end{matrix}\right.\Leftrightarrow x\ge\frac{-1}{3}\)

NV
12 tháng 6 2019

a/ \(1-4x\ge0\Rightarrow x\le\frac{1}{4}\)

b/\(3-4x\ne0\Rightarrow x\ne\frac{3}{4}\)

c/ \(2x-2< 0\Rightarrow x< 1\)

d/ \(\left\{{}\begin{matrix}4x+2\ne0\\1+3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne-\frac{1}{2}\\x\ge-\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow x\ge-\frac{1}{3}\)

20 tháng 7 2019

a) ĐK: \(\left\{{}\begin{matrix}x\ne-1\\\frac{4-x}{x+1}\ge0\end{matrix}\right.\). Lập bảng xét dấu sẽ được \(-1< x\le4\)

b) Tương tự

c)(em ko chắc) ĐK: \(\left\{{}\begin{matrix}x^2-4\ge0\left(1\right)\\\frac{x-2}{x+1}\ge0\left(2\right)\\x\ne-1\end{matrix}\right.\). Giải (1) ta được \(x\le-2\text{hoặc }x\ge2\)

Giải (2) được \(x\le-1\text{ hoặc }x\ge2\)

Kết hợp lại ta được: \(x\le-2\text{hoặc }x\ge2\)

1 tháng 7 2021

\(a,\sqrt{1-3x}\)

\(< =>1-3x\ge0\)

\(3x\le1\)

\(x\le\frac{1}{3}\)

\(b,-3< 0\)

\(< =>2x-5\ne0;2x-5\le0< =>2x-5< 0\)

\(x< \frac{5}{2}\)

\(c,\sqrt{3x+2}+\sqrt{-2x+3}\)

\(\hept{\begin{cases}3x+2\ge0\\-2x+3\ge0\end{cases}}\)

\(\hept{\begin{cases}x\ge-\frac{2}{3}\\x\le\frac{3}{2}\end{cases}}\)

\(< =>-\frac{2}{3}\le x\le\frac{3}{2}\)

\(d,\frac{x-5}{\sqrt{-4x}}\)

\(\sqrt{-4x}\ge0;\sqrt{-4x}\ne0< =>\sqrt{-4x}>0\)

\(-4x>0\)

\(x< 0\)

\(e,\sqrt{x-2}+\frac{1}{x-3}\)

\(\sqrt{x-2}\ge0;x-3\ne0\)

\(x\ge2;x\ne3\)

\(f,\sqrt{-\left(x-2\right)^2}\)

\(\sqrt{-\left(x-2\right)^2}\ge0\)

\(-\left|x-2\right|\ge0\)

\(-\left|x-2\right|\le0\)

lên chỉ có 1 nghiệm duy nhất là 

\(x-2=0< =>x=2\)

\(g,\sqrt{\frac{-2x^2}{3x+2}}\)

\(-2x^2\le0\)

\(\sqrt{\frac{-2x^2}{3x+2}}\ge0< =>3x+2\le0;3x+2\ne0\)

\(x\le-\frac{2}{3};x\ne-\frac{2}{3}< =>x< -\frac{2}{3}\)

1 tháng 7 2021

a)\(\sqrt{1-3x}\)có nghĩa \(\Leftrightarrow\sqrt{1-3x}\ge0\)

\(\Leftrightarrow1-3x\ge0\)

\(\Leftrightarrow-3x\ge-1\)

\(\Leftrightarrow x\ge\frac{1}{3}\)

b)\(\sqrt{\frac{-3}{2x-5}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-3}{2x-5}}\ge0\)

\(\Leftrightarrow\frac{-3}{2x-5}\ge0\)

\(\Leftrightarrow2x-5>0\)

\(\Leftrightarrow2x>5\)

\(\Leftrightarrow x>\frac{5}{2}\)

c)\(\sqrt{3x+2}+\sqrt{-2x+3}\)có nghĩa \(\sqrt{3x+2}+\sqrt{-2x+3}\ge0\)

\(\Leftrightarrow3x+2-2x+3\ge0\)

\(\Leftrightarrow x+5\ge0\)

\(\Leftrightarrow x\ge-5\)

d)\(\frac{x-5}{\sqrt{-4x}}\)có nghĩa \(\Leftrightarrow\frac{x-5}{\sqrt{-4x}}\ge0\)

\(\Leftrightarrow\frac{x-5}{\sqrt{-\left(2x\right)^2}}\ge0\)

\(\Leftrightarrow\frac{x-5}{-2x}\ge0\)

\(\Leftrightarrow-2x>0\)

\(\Leftrightarrow x>2\)(Câu này không chắc làm đúng không, chắc sai goi)

f)\(\sqrt{-x^2+4x-4}\)có nghĩa \(\Leftrightarrow\sqrt{-x^2+4x-4}\ge0\)

\(\Leftrightarrow-x^2+4x-4\ge0\)

\(\Leftrightarrow-\left(x-2\right)^2\ge0\)

không có z thỏa mãn

g)\(\sqrt{\frac{-2x^2}{3x+2}}\)có nghĩa \(\Leftrightarrow\sqrt{\frac{-2x^2}{3x+2}}\ge0\)

\(\Leftrightarrow\frac{-2x^2}{3x+2}\ge0\)

\(\Leftrightarrow3x+2>0\)

\(\Leftrightarrow3x>-2\)

\(\Leftrightarrow x>\frac{-2}{3}\)

@Cừu

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

h)

ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)

k)

ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)

m)

ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$

b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)

c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$

d) ĐK:

\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)

e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$

f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)

3 tháng 8 2019

\(a,\frac{1}{\sqrt{5x+15}}\)

Để biểu thức trên có nghĩa :

\(\Rightarrow\sqrt{5x+15}\ge0\)

\(\Rightarrow5\left(x+3\right)\ge0\)

\(\Rightarrow x\ge-3\)

Vậy....