Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)ĐK:`4x^2-12x+9>0`
`<=>(2n-3)^2>0`
`<=>2n-3 ne 0`
`<=>n ne 3/2`
`d)x^2-x+1`
`=(x-1/2)^2+3/4>0AAx`
`=>` bt xd `AAx in RR`
e)ĐK:`x^2-8x+15>0`
`<=>x^2-3x-5x+15>0`
`<=>x(x-3)-5(x-3)>0`
`<=>(x-3)(x-5)>0`
`TH1:` \(\begin{cases}x-3>0\\x-5>0\\\end{cases}\)
`<=>` \(\begin{cases}x>3\\x>5\\\end{cases}\)
`<=>x>5`
`TH2:` \(\begin{cases}x-3<0\\x-5<0\\\end{cases}\)
`<=>` \(\begin{cases}x<3\\x<5\\\end{cases}\)
`<=>x<3`
f)ĐK:`3x^2-7x+20>0`
`<=>x^2-2x+1+2x^2-5x+19>0`
`<=>(x-1)^2+2(x-5/2)^2+13/2>0` luôn đúng
1/ \(x\ge\dfrac{1}{3}\)
2/ \(\forall x\in R\)
3/ \(x\le\dfrac{5}{2}\)
4/ \(x\in\left(-\infty,-\sqrt{2}\right)\cup\left(\sqrt{2},+\infty\right)\)
5/ \(x>2\)
6/ \(x^2-3x+7\ge0\Rightarrow\forall x\in R\)
7/ \(x\ge\dfrac{1}{2}\)
8/ \(x\in\left(-\infty,-3\right)\cup\left(3,+\infty\right)\)
9/ \(\dfrac{x+3}{7-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3\le x< 7\\7< x< -3\left(voli\right)\end{matrix}\right.\)
10/ \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\Leftrightarrow x\ge\dfrac{1}{6}\)
*Căn thức luôn không âm & mẫu chứa căn luôn dương
1) Để biểu thức \(\sqrt{3x-1}\) có nghĩa thì \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\dfrac{1}{3}\)
2) Ta có \(x^2\ge0\Leftrightarrow x^2+3\ge3>0\)
Vậy với mọi x thì biểu thức \(\sqrt{x^2+3}\) có nghĩa
3) Để biểu thức \(\sqrt{5-2x}\) có nghĩa thì \(5-2x\ge0\Leftrightarrow2x\le5\Leftrightarrow x\le\dfrac{5}{2}\)
4) Để biểu thức \(\sqrt{x^2-2}\) có nghĩa thì \(x^2-2\ge0\Leftrightarrow x^2\ge2\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge\sqrt{2}\\x\le-\sqrt{2}\end{matrix}\right.\)
5) Để biểu thức \(\dfrac{1}{\sqrt{7x-14}}\) có nghĩa thì \(7x-14>0\Leftrightarrow7x>14\Leftrightarrow x>2\)
6) Ta có \(x^2-3x+7=x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{19}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}>0\Leftrightarrow x^2-3x+7>0\)
Vậy với mọi x thì \(\sqrt{x^2-3x+7}\) luôn có nghĩa
7) Để biểu thức \(\sqrt{2x-1}\) có nghĩa thì \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)
8) Để biểu thức \(\sqrt{x^2-9}\) có nghĩa thì \(x^2-9\ge0\Leftrightarrow x^2\ge9\Leftrightarrow\)\(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
9) Để biểu thức \(\sqrt{\dfrac{x+3}{7-x}}\) có nghĩa thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3\ge0\\7-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3\le0\\7-x< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge-3\\x< 7\end{matrix}\right.\\\left\{{}\begin{matrix}x\le-3\\x>7\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(-3\le x< 7\)
10) Để biểu thức \(\sqrt{6x-1}+\sqrt{x+3}\) có nghĩa thì \(\left\{{}\begin{matrix}6x-1\ge0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}6x\ge1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{1}{6}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow\)\(x\ge\dfrac{1}{6}\)
a, Với \(x\ge0;x\ne\frac{16}{9};4\)
\(P=\frac{2\sqrt{x}-4}{3\sqrt{x}-4}-\frac{4+2\sqrt{x}}{\sqrt{x}-2}+\frac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)
\(=\frac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{2-\sqrt{x}}\)
b, \(P\ge-\frac{3}{4}\Rightarrow\frac{\sqrt{x}+1}{2-\sqrt{x}}+\frac{3}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}+4+6-3\sqrt{x}}{8-4\sqrt{x}}\ge0\Leftrightarrow\frac{\sqrt{x}+10}{8-4\sqrt{x}}\ge0\)
\(\Rightarrow2-\sqrt{x}\ge0\Leftrightarrow x\le4\)Kết hợp với đk vậy \(0\le x< 4\)
1) Để biểu thức \(\dfrac{\sqrt{x+2}}{\sqrt{x-5}}\) có nghĩa thì \(\left\{{}\begin{matrix}x+2\ge0\\x-5>0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge-2\\x>5\end{matrix}\right.\)\(\Leftrightarrow x>5\)
2) Để biểu thức \(\sqrt{\dfrac{3x}{2}}\) có nghĩa thì \(\dfrac{3x}{2}\ge0\Leftrightarrow x\ge0\)
1: ĐKXĐ: 6-3x>=0 và x<>3
=>x<=2
2: ĐKXĐ: 3-2x>0
=>2x<3
hay x<3/2
3: ĐKXĐ: x>=0
ta có :
\(P=\frac{\sqrt{x}+4}{1-7\sqrt{x}}+\frac{\sqrt{x}-2}{\sqrt{x}+1}+\frac{24\sqrt{x}}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}\)
\(\frac{-\left(\sqrt{x}+4\right)\left(\sqrt{x}+1\right)+\left(\sqrt{x}-2\right)\left(7\sqrt{x}-1\right)+24\sqrt{x}}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}=\frac{6x+4\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(7\sqrt{x}-1\right)}\)
\(=\frac{6\sqrt{x}+2}{7\sqrt{x}-1}\)
Để \(P\ge-6\Leftrightarrow\frac{6\sqrt{x}+2}{7\sqrt{x}-1}\ge-6\Leftrightarrow\frac{48\sqrt{x}-4}{7\sqrt{x}-1}\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}0\le\sqrt{x}\le\frac{1}{12}\\\sqrt{x}>\frac{1}{7}\end{cases}}\Leftrightarrow\orbr{\begin{cases}0\le x\le\frac{1}{144}\\x>\frac{1}{49}\end{cases}}\)
a: ĐKXĐ: \(\dfrac{1}{2-x}>=0\)
=>2-x>0
hay x<2
b: ĐKXĐ: \(\dfrac{3}{x^2-1}>=0\)
=>(x-1)(x+1)>0
=>x>1 hoặc x<-1
c: ĐKXĐ: \(x\in R\)
a: ĐKXĐ: \(x\ge1\)
b: ĐKXĐ: \(x< 0\)
c: ĐKXĐ: \(\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
1) ĐKXĐ: \(\left\{{}\begin{matrix}2x+11\ge0\\x-1\ge0\end{matrix}\right.\)\(\Leftrightarrow x\ge1\)
2) ĐKXĐ: \(\left\{{}\begin{matrix}-5x\ge0\\x\ne0\end{matrix}\right.\)\(\Leftrightarrow x< 0\)
3) ĐKXĐ: \(7x^2+1\ge0\left(đúng\forall x\right)\Leftrightarrow x\in R\)
4) ĐKXĐ: \(x^2-14x+33\ge0\Leftrightarrow\left(x-11\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-11\ge0\\x-3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-11\le0\\x-3\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge11\\x\le3\end{matrix}\right.\)
5) ĐKXĐ:
+) \(-x^2+6x+16\ge0\)
\(\Leftrightarrow-\left(x^2-6x+9\right)+25\ge0\)
\(\Leftrightarrow\left(x-3\right)^2\le25\Leftrightarrow-5\le x-3\le5\)
\(\Leftrightarrow-2\le x\le8\)
+) \(3x^2\ne0\Leftrightarrow x\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}-2\le x\le8\\x\ne0\end{matrix}\right.\)
\(\dfrac{1}{\sqrt{3x^2-7x+20}}=\dfrac{1}{\sqrt{3\left(x-\dfrac{7}{6}\right)^2+\dfrac{191}{12}}}>0\forall x\)
We have \(3x^2-7x+20=\dfrac{1}{12}\left(36x^2-84x+240\right)\) \(=\dfrac{1}{12}\left[\left(6x\right)^2-2.6x.7+49+191\right]\) \(=\dfrac{1}{12}\left(6x-7\right)^2+\dfrac{191}{12}\)
Because \(\dfrac{1}{12}\left(6x-7\right)^2\ge0\) \(\Leftrightarrow\dfrac{1}{12}\left(6x-7\right)^2+\dfrac{191}{12}\ge\dfrac{191}{12}>0\) or we have \(3x^2-7x+20>0\) whatever the real number \(x\) is. Therefore, \(\dfrac{1}{\sqrt{3x^2-7x+20}}\) is always deterministic for all real numbers \(x\).